66,389 research outputs found

    The Lifting Properties of A-Homotopy Theory

    Full text link
    In classical homotopy theory, two spaces are homotopy equivalent if one space can be continuously deformed into the other. This theory, however, does not respect the discrete nature of graphs. For this reason, a discrete homotopy theory that recognizes the difference between the vertices and edges of a graph was invented, called A-homotopy theory [1-5]. In classical homotopy theory, covering spaces and lifting properties are often used to compute the fundamental group of the circle. In this paper, we develop the lifting properties for A-homotopy theory. Using a covering graph and these lifting properties, we compute the fundamental group of the 5-cycle , giving an alternate approach to [4].Comment: 27 pages, 3 figures, updated version. Minor changes to the introduction and clarification that the computation of the fundamental group of the 5-cycle originally appeared in [4]. Title changed from "Computing A-Homotopy Groups Using Coverings and Lifting Properties" to "The Lifting Properties of A-Homotopy Theory

    A uniqueness theorem for stable homotopy theory

    Full text link
    In this paper we study the global structure of the stable homotopy theory of spectra. We establish criteria for when the homotopy theory associated to a given stable model category agrees with the classical stable homotopy theory of spectra. One sufficient condition is that the associated homotopy category is equivalent to the stable homotopy category as a triangulated category with an action of the ring of stable homotopy groups of spheres. In other words, the classical stable homotopy theory, with all of its higher order information, is determined by the homotopy category as a triangulated category with an action of the stable homotopy groups of spheres. Another sufficient condition is the existence of a small generating object (corresponding to the sphere spectrum) for which a specific `unit map' from the infinite loop space QS^0 to the endomorphism space is a weak equivalence
    • …
    corecore