66,389 research outputs found
The Lifting Properties of A-Homotopy Theory
In classical homotopy theory, two spaces are homotopy equivalent if one space
can be continuously deformed into the other. This theory, however, does not
respect the discrete nature of graphs. For this reason, a discrete homotopy
theory that recognizes the difference between the vertices and edges of a graph
was invented, called A-homotopy theory [1-5]. In classical homotopy theory,
covering spaces and lifting properties are often used to compute the
fundamental group of the circle. In this paper, we develop the lifting
properties for A-homotopy theory. Using a covering graph and these lifting
properties, we compute the fundamental group of the 5-cycle , giving an
alternate approach to [4].Comment: 27 pages, 3 figures, updated version. Minor changes to the
introduction and clarification that the computation of the fundamental group
of the 5-cycle originally appeared in [4]. Title changed from "Computing
A-Homotopy Groups Using Coverings and Lifting Properties" to "The Lifting
Properties of A-Homotopy Theory
A uniqueness theorem for stable homotopy theory
In this paper we study the global structure of the stable homotopy theory of
spectra. We establish criteria for when the homotopy theory associated to a
given stable model category agrees with the classical stable homotopy theory of
spectra. One sufficient condition is that the associated homotopy category is
equivalent to the stable homotopy category as a triangulated category with an
action of the ring of stable homotopy groups of spheres. In other words, the
classical stable homotopy theory, with all of its higher order information, is
determined by the homotopy category as a triangulated category with an action
of the stable homotopy groups of spheres. Another sufficient condition is the
existence of a small generating object (corresponding to the sphere spectrum)
for which a specific `unit map' from the infinite loop space QS^0 to the
endomorphism space is a weak equivalence
- …