33 research outputs found

    Homomorphisms are a good basis for counting small subgraphs

    Get PDF
    We introduce graph motif parameters, a class of graph parameters that depend only on the frequencies of constant-size induced subgraphs. Classical works by Lov\'asz show that many interesting quantities have this form, including, for fixed graphs HH, the number of HH-copies (induced or not) in an input graph GG, and the number of homomorphisms from HH to GG. Using the framework of graph motif parameters, we obtain faster algorithms for counting subgraph copies of fixed graphs HH in host graphs GG: For graphs HH on kk edges, we show how to count subgraph copies of HH in time kO(k)⋅n0.174k+o(k)k^{O(k)}\cdot n^{0.174k + o(k)} by a surprisingly simple algorithm. This improves upon previously known running times, such as O(n0.91k+c)O(n^{0.91k + c}) time for kk-edge matchings or O(n0.46k+c)O(n^{0.46k + c}) time for kk-cycles. Furthermore, we prove a general complexity dichotomy for evaluating graph motif parameters: Given a class C\mathcal C of such parameters, we consider the problem of evaluating f∈Cf\in \mathcal C on input graphs GG, parameterized by the number of induced subgraphs that ff depends upon. For every recursively enumerable class C\mathcal C, we prove the above problem to be either FPT or #W[1]-hard, with an explicit dichotomy criterion. This allows us to recover known dichotomies for counting subgraphs, induced subgraphs, and homomorphisms in a uniform and simplified way, together with improved lower bounds. Finally, we extend graph motif parameters to colored subgraphs and prove a complexity trichotomy: For vertex-colored graphs HH and GG, where HH is from a fixed class H\mathcal H, we want to count color-preserving HH-copies in GG. We show that this problem is either polynomial-time solvable or FPT or #W[1]-hard, and that the FPT cases indeed need FPT time under reasonable assumptions.Comment: An extended abstract of this paper appears at STOC 201
    corecore