2,344 research outputs found

    Homomorphisms preserving types of density

    Get PDF
    The concept of density in a free monoid can be generalized from the infix relation to arbitrary relations. Many of the properties known for density can be established over these more general notions of densities. In this paper, we investigate homomorphisms which preserve different types of density. We demonstrate a strict hierarchy between families of homomorphisms which preserve density over different types of relations. However, as with the case of endomorphisms, a similar hierarchy for weak-coding homomorphisms collapses. We also present an algorithm to decide whether a homomorphism preserves density over any relation which satisfies some natural conditions

    Limits of dense graph sequences

    Full text link
    We show that if a sequence of dense graphs has the property that for every fixed graph F, the density of copies of F in these graphs tends to a limit, then there is a natural ``limit object'', namely a symmetric measurable 2-variable function on [0,1]. This limit object determines all the limits of subgraph densities. We also show that the graph parameters obtained as limits of subgraph densities can be characterized by ``reflection positivity'', semidefiniteness of an associated matrix. Conversely, every such function arises as a limit object. Along the lines we introduce a rather general model of random graphs, which seems to be interesting on its own right.Comment: 27 pages; added extension of result (Sept 22, 2004

    Category forcings, MM+++MM^{+++}, and generic absoluteness for the theory of strong forcing axioms

    Get PDF
    We introduce a category whose objects are stationary set preserving complete boolean algebras and whose arrows are complete homomorphisms with a stationary set preserving quotient. We show that the cut of this category at a rank initial segment of the universe of height a super compact which is a limit of super compact cardinals is a stationary set preserving partial order which forces MM++MM^{++} and collapses its size to become the second uncountable cardinal. Next we argue that any of the known methods to produce a model of MM++MM^{++} collapsing a superhuge cardinal to become the second uncountable cardinal produces a model in which the cutoff of the category of stationary set preserving forcings at any rank initial segment of the universe of large enough height is forcing equivalent to a presaturated tower of normal filters. We let MM+++MM^{+++} denote this statement and we prove that the theory of L(Ordω1)L(Ord^{\omega_1}) with parameters in P(ω1)P(\omega_1) is generically invariant for stationary set preserving forcings that preserve MM+++MM^{+++}. Finally we argue that the work of Larson and Asper\'o shows that this is a next to optimal generalization to the Chang model L(Ordω1)L(Ord^{\omega_1}) of Woodin's generic absoluteness results for the Chang model L(Ordω)L(Ord^{\omega}). It remains open whether MM+++MM^{+++} and MM++MM^{++} are equivalent axioms modulo large cardinals and whether MM++MM^{++} suffices to prove the same generic absoluteness results for the Chang model L(Ordω1)L(Ord^{\omega_1}).Comment: - to appear on the Journal of the American Mathemtical Societ

    Area Preserving Transformations in Non-commutative Space and NCCS Theory

    Full text link
    We propose an heuristic rule for the area transformation on the non-commutative plane. The non-commutative area preserving transformations are quantum deformation of the classical symplectic diffeomorphisms. Area preservation condition is formulated as a field equation in the non-commutative Chern-Simons gauge theory. The higher dimensional generalization is suggested and the corresponding algebraic structure - the infinite dimensional sin\sin-Lie algebra is extracted. As an illustrative example the second-quantized formulation for electrons in the lowest Landau level is considered.Comment: revtex, 9 pages, corrected typo

    Resource theories of knowledge

    Full text link
    How far can we take the resource theoretic approach to explore physics? Resource theories like LOCC, reference frames and quantum thermodynamics have proven a powerful tool to study how agents who are subject to certain constraints can act on physical systems. This approach has advanced our understanding of fundamental physical principles, such as the second law of thermodynamics, and provided operational measures to quantify resources such as entanglement or information content. In this work, we significantly extend the approach and range of applicability of resource theories. Firstly we generalize the notion of resource theories to include any description or knowledge that agents may have of a physical state, beyond the density operator formalism. We show how to relate theories that differ in the language used to describe resources, like micro and macroscopic thermodynamics. Finally, we take a top-down approach to locality, in which a subsystem structure is derived from a global theory rather than assumed. The extended framework introduced here enables us to formalize new tasks in the language of resource theories, ranging from tomography, cryptography, thermodynamics and foundational questions, both within and beyond quantum theory.Comment: 28 pages featuring figures, examples, map and neatly boxed theorems, plus appendi
    corecore