1,742 research outputs found

    Homogenization of Parabolic Equations with a Continuum of Space and Time Scales

    Get PDF
    This paper addresses the issue of the homogenization of linear divergence form parabolic operators in situations where no ergodicity and no scale separation in time or space are available. Namely, we consider divergence form linear parabolic operators in ΩRn\Omega \subset \mathbb{R}^n with L(Ω×(0,T))L^\infty(\Omega \times (0,T))-coefficients. It appears that the inverse operator maps the unit ball of L2(Ω×(0,T))L^2(\Omega\times (0,T)) into a space of functions which at small (time and space) scales are close in H1H^1 norm to a functional space of dimension nn. It follows that once one has solved these equations at least nn times it is possible to homogenize them both in space and in time, reducing the number of operation counts necessary to obtain further solutions. In practice we show under a Cordes-type condition that the first order time derivatives and second order space derivatives of the solution of these operators with respect to caloric coordinates are in L2L^2 (instead of H1H^{-1} with Euclidean coordinates). If the medium is time-independent, then it is sufficient to solve nn times the associated elliptic equation in order to homogenize the parabolic equation

    Nonlinear nonlocal multicontinua upscaling framework and its applications

    Full text link
    In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation

    Numerical Homogenization of the Acoustic Wave Equations with a Continuum of Scales

    Get PDF
    In this paper, we consider numerical homogenization of acoustic wave equations with heterogeneous coefficients, namely, when the bulk modulus and the density of the medium are only bounded. We show that under a Cordes type condition the second order derivatives of the solution with respect to harmonic coordinates are L2L^2 (instead H1H^{-1} with respect to Euclidean coordinates) and the solution itself is in L(0,T,H2(Ω))L^{\infty}(0,T,H^2(\Omega)) (instead of L(0,T,H1(Ω))L^{\infty}(0,T,H^1(\Omega)) with respect to Euclidean coordinates). Then, we propose an implicit time stepping method to solve the resulted linear system on coarse spatial scales, and present error estimates of the method. It follows that by pre-computing the associated harmonic coordinates, it is possible to numerically homogenize the wave equation without assumptions of scale separation or ergodicity.Comment: 27 pages, 4 figures, Submitte

    Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast

    Get PDF
    We construct finite-dimensional approximations of solution spaces of divergence form operators with LL^\infty-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the property that the solution space of these operators is compactly embedded in H1H^1 if source terms are in the unit ball of L2L^2 instead of the unit ball of H1H^{-1}. Approximation spaces are generated by solving elliptic PDEs on localized sub-domains with source terms corresponding to approximation bases for H2H^2. The H1H^1-error estimates show that O(hd)\mathcal{O}(h^{-d})-dimensional spaces with basis elements localized to sub-domains of diameter O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) (with α[1/2,1)\alpha \in [1/2,1)) result in an O(h22α)\mathcal{O}(h^{2-2\alpha}) accuracy for elliptic, parabolic and hyperbolic problems. For high-contrast media, the accuracy of the method is preserved provided that localized sub-domains contain buffer zones of width O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) where the contrast of the medium remains bounded. The proposed method can naturally be generalized to vectorial equations (such as elasto-dynamics).Comment: Accepted for publication in SIAM MM

    Metric based up-scaling

    Get PDF
    We consider divergence form elliptic operators in dimension n2n\geq 2 with LL^\infty coefficients. Although solutions of these operators are only H\"{o}lder continuous, we show that they are differentiable (C1,αC^{1,\alpha}) with respect to harmonic coordinates. It follows that numerical homogenization can be extended to situations where the medium has no ergodicity at small scales and is characterized by a continuum of scales by transferring a new metric in addition to traditional averaged (homogenized) quantities from subgrid scales into computational scales and error bounds can be given. This numerical homogenization method can also be used as a compression tool for differential operators.Comment: Final version. Accepted for publication in Communications on Pure and Applied Mathematics. Presented at CIMMS (March 2005), Socams 2005 (April), Oberwolfach, MPI Leipzig (May 2005), CIRM (July 2005). Higher resolution figures are available at http://www.acm.caltech.edu/~owhadi

    The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations

    Full text link
    We consider uniformly elliptic coefficient fields that are randomly distributed according to a stationary ensemble of a finite range of dependence. We show that the gradient and flux (ϕ,a(ϕ+e))(\nabla\phi,a(\nabla \phi+e)) of the corrector ϕ\phi, when spatially averaged over a scale R1R\gg 1 decay like the CLT scaling Rd2R^{-\frac{d}{2}}. We establish this optimal rate on the level of sub-Gaussian bounds in terms of the stochastic integrability, and also establish a suboptimal rate on the level of optimal Gaussian bounds in terms of the stochastic integrability. The proof unravels and exploits the self-averaging property of the associated semi-group, which provides a natural and convenient disintegration of scales, and culminates in a propagator estimate with strong stochastic integrability. As an application, we characterize the fluctuations of the homogenization commutator, and prove sharp bounds on the spatial growth of the corrector, a quantitative two-scale expansion, and several other estimates of interest in homogenization.Comment: 114 pages. Revised version with some new results: optimal scaling with nearly-optimal stochastic integrability on top of nearly-optimal scaling with optimal stochastic integrability, CLT for the homogenization commutator, and several estimates on growth of the extended corrector, semi-group estimates, and systematic error

    Homogenization for advection-diffusion in a perforated domain

    Get PDF
    The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffusion when subject to Dirichlet conditions on the boundaries of a sparse and independent array of obstacles. There is a constant effective long-time loss rate at the obstacles. The dependence of this rate on the form and intensity of the obstacles and on the velocity field is investigated. A Monte Carlo algorithm for the computation of the volume growth rate of the sausage is introduced and some numerical results are presented for the Taylor–Green velocity field
    corecore