88,503 research outputs found
Effect of catalytic conditions on the synthesis of new aconitate esters
Sugar cane is a crop which generates large amounts of biomass and a juice rich in highvalue natural molecules. After extracting sugar from the juice, the recovering of various compounds such as organic acids contained in molasses could contribute to increase the competivity of the sugar industry. Therefore, according to the biorefinery approach, we propose to study the chemical conversion of one of these acids, the aconitic acid, by esterification reactions. A new series of aconitate esters have been synthesized by combining aconitic acid and alcohols from natural origin. The effects of experimental conditions have been investigated and have shown that the type of catalysis has a significant effect on the selectivity. Kinectics have thus been performed to determine the best conditions to synthetize enriched compositions in esters. Homogeneous catalysis generates the highest yield in triester. Heterogeneous catalysis(macroporous resins) is prefered for the production of monoesters while catalysis assisted by ionic liquid is adapted to prepare mainly diesters. Green indicators have been discussed according to the calculations performed. The resulting polyfunctional esters are totally biosourced molecules and have a great potential as bioproducts for different applications
Heterogeneous Catalysis on a Disordered Surface
We introduce a simple model of heterogeneous catalysis on a disordered
surface which consists of two types of randomly distributed sites with
different adsorption rates. Disorder can create a reactive steady state in
situations where the same model on a homogeneous surface exhibits trivial
kinetics with no steady state. A rich variety of kinetic behaviors occur for
the adsorbate concentrations and catalytic reaction rate as a function of model
parameters.Comment: 4 pages, gzipped PostScript fil
Modelling and Environmental Assessment of Heterogeneous Catalysis Biodiesel Process Using War Algorithm
Environmental assessment in a preliminary designing stage of a process is important to evaluate the environmental friendliness of a process design, minimizing the environmental impact of the process. WAR algorithm, a methodology for determining the potential environmental impact (PEI) of a chemical process is developed to describe the flow and the generation of PEI through a chemical process. WAR algorithm which acts as a comparison tool in selecting the environmentally benign design option is developed using heterogeneous catalysis and alkali homogeneous catalysis of biodiesel process as case study. Heterogeneous catalysis of biodiesel process flowsheeting is first developed and simulated using Aspen Plus 7.0. Data and simulation results are then exported to the spreadsheet for environmental assessment of WAR algorithm. Four PEI indexes (TRO,TOP,TRG,TGP) are used to evaluate the environmental friendliness of a process design while eight PEI categories (four global and four toxilogical) are used to evaluate the PEI indexes. Comparison of the PEI indexes concluded that heterogeneous catalysis of biodiesel process showed more environmentally friendly process with minimum amount of PEI value compared to homogeneous catalysis process
Intensified processes for FAME production from waste cooking oil: a technological review
This article reviews the intensification of fatty acid methyl esters (FAME) production from waste cooking oil (WCO) using innovative process equipment. In particular, it addresses the intensification of WCO feedstock transformation by transesterification, esterification and hydrolysis reactions. It also discusses catalyst choice and product separation. FAME production can be intensified via the use of a number of process equipment types, including as cavitational reactors, oscillatory baffled reactors, microwave reactors, reactive distillation, static mixers and microstructured reactors. Furthermore, continuous flow equipment that integrate both reaction and separation steps appear to be the best means for intensifying FAME production. Heterogeneous catalysts have also shown to provide attractive results in terms of reaction performance in certain equipment, such as microwave reactors and reactive distillation
Development of covalent triazine frameworks as heterogeneous catalytic supports
Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks
Direct methane conversion to methanol by ionic liquid-dissolved platinum catalysts
Ternary systems of inorganic Pt salts and oxides, ionic liquids and concentrated sulfuric acid are effective at catalyzing the direct, selective oxidation of methane to methanol and appear to be more water tolerant than the Catalytica reaction
- …
