468 research outputs found

    Reducing the size and number of linear programs in a dynamic Gr\"obner basis algorithm

    Full text link
    The dynamic algorithm to compute a Gr\"obner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many linear constraints. This paper describes two methods of reducing the cost substantially, answering the problem effectively.Comment: 11 figures, of which half are algorithms; submitted to journal for refereeing, December 201

    On the complexity of computing Gr\"obner bases for weighted homogeneous systems

    Get PDF
    Solving polynomial systems arising from applications is frequently made easier by the structure of the systems. Weighted homogeneity (or quasi-homogeneity) is one example of such a structure: given a system of weights W=(w_1,,w_n)W=(w\_{1},\dots,w\_{n}), WW-homogeneous polynomials are polynomials which are homogeneous w.r.t the weighted degree deg_W(X_1α_1,,X_nα_n)=w_iα_i\deg\_{W}(X\_{1}^{\alpha\_{1}},\dots,X\_{n}^{\alpha\_{n}}) = \sum w\_{i}\alpha\_{i}. Gr\"obner bases for weighted homogeneous systems can be computed by adapting existing algorithms for homogeneous systems to the weighted homogeneous case. We show that in this case, the complexity estimate for Algorithm~\F5 \left(\binom{n+\dmax-1}{\dmax}^{\omega}\right) can be divided by a factor (w_i)ω\left(\prod w\_{i} \right)^{\omega}. For zero-dimensional systems, the complexity of Algorithm~\FGLM nDωnD^{\omega} (where DD is the number of solutions of the system) can be divided by the same factor (w_i)ω\left(\prod w\_{i} \right)^{\omega}. Under genericity assumptions, for zero-dimensional weighted homogeneous systems of WW-degree (d_1,,d_n)(d\_{1},\dots,d\_{n}), these complexity estimates are polynomial in the weighted B\'ezout bound _i=1nd_i/_i=1nw_i\prod\_{i=1}^{n}d\_{i} / \prod\_{i=1}^{n}w\_{i}. Furthermore, the maximum degree reached in a run of Algorithm \F5 is bounded by the weighted Macaulay bound (d_iw_i)+w_n\sum (d\_{i}-w\_{i}) + w\_{n}, and this bound is sharp if we can order the weights so that w_n=1w\_{n}=1. For overdetermined semi-regular systems, estimates from the homogeneous case can be adapted to the weighted case. We provide some experimental results based on systems arising from a cryptography problem and from polynomial inversion problems. They show that taking advantage of the weighted homogeneous structure yields substantial speed-ups, and allows us to solve systems which were otherwise out of reach

    A Purely Functional Computer Algebra System Embedded in Haskell

    Full text link
    We demonstrate how methods in Functional Programming can be used to implement a computer algebra system. As a proof-of-concept, we present the computational-algebra package. It is a computer algebra system implemented as an embedded domain-specific language in Haskell, a purely functional programming language. Utilising methods in functional programming and prominent features of Haskell, this library achieves safety, composability, and correctness at the same time. To demonstrate the advantages of our approach, we have implemented advanced Gr\"{o}bner basis algorithms, such as Faug\`{e}re's F4F_4 and F5F_5, in a composable way.Comment: 16 pages, Accepted to CASC 201

    Upgraded methods for the effective computation of marked schemes on a strongly stable ideal

    Get PDF
    Let JS=K[x0,...,xn]J\subset S=K[x_0,...,x_n] be a monomial strongly stable ideal. The collection \Mf(J) of the homogeneous polynomial ideals II, such that the monomials outside JJ form a KK-vector basis of S/IS/I, is called a {\em JJ-marked family}. It can be endowed with a structure of affine scheme, called a {\em JJ-marked scheme}. For special ideals JJ, JJ-marked schemes provide an open cover of the Hilbert scheme \hilbp, where p(t)p(t) is the Hilbert polynomial of S/JS/J. Those ideals more suitable to this aim are the mm-truncation ideals Jm\underline{J}_{\geq m} generated by the monomials of degree m\geq m in a saturated strongly stable monomial ideal J\underline{J}. Exploiting a characterization of the ideals in \Mf(\underline{J}_{\geq m}) in terms of a Buchberger-like criterion, we compute the equations defining the Jm\underline{J}_{\geq m}-marked scheme by a new reduction relation, called {\em superminimal reduction}, and obtain an embedding of \Mf(\underline{J}_{\geq m}) in an affine space of low dimension. In this setting, explicit computations are achievable in many non-trivial cases. Moreover, for every mm, we give a closed embedding \phi_m: \Mf(\underline{J}_{\geq m})\hookrightarrow \Mf(\underline{J}_{\geq m+1}), characterize those ϕm\phi_m that are isomorphisms in terms of the monomial basis of J\underline{J}, especially we characterize the minimum integer m0m_0 such that ϕm\phi_m is an isomorphism for every mm0m\geq m_0.Comment: 28 pages; this paper contains and extends the second part of the paper posed at arXiv:0909.2184v2[math.AG]; sections are now reorganized and the general presentation of the paper is improved. Final version accepted for publicatio

    Numerical Algorithms for Dual Bases of Positive-Dimensional Ideals

    Full text link
    An ideal of a local polynomial ring can be described by calculating a standard basis with respect to a local monomial ordering. However standard basis algorithms are not numerically stable. Instead we can describe the ideal numerically by finding the space of dual functionals that annihilate it, reducing the problem to one of linear algebra. There are several known algorithms for finding the truncated dual up to any specified degree, which is useful for describing zero-dimensional ideals. We present a stopping criterion for positive-dimensional cases based on homogenization that guarantees all generators of the initial monomial ideal are found. This has applications for calculating Hilbert functions.Comment: 19 pages, 4 figure

    Dual-to-kernel learning with ideals

    Get PDF
    In this paper, we propose a theory which unifies kernel learning and symbolic algebraic methods. We show that both worlds are inherently dual to each other, and we use this duality to combine the structure-awareness of algebraic methods with the efficiency and generality of kernels. The main idea lies in relating polynomial rings to feature space, and ideals to manifolds, then exploiting this generative-discriminative duality on kernel matrices. We illustrate this by proposing two algorithms, IPCA and AVICA, for simultaneous manifold and feature learning, and test their accuracy on synthetic and real world data.Comment: 15 pages, 1 figur
    corecore