54 research outputs found

    Contextualized Word Representations for Reading Comprehension

    Full text link
    Reading a document and extracting an answer to a question about its content has attracted substantial attention recently. While most work has focused on the interaction between the question and the document, in this work we evaluate the importance of context when the question and document are processed independently. We take a standard neural architecture for this task, and show that by providing rich contextualized word representations from a large pre-trained language model as well as allowing the model to choose between context-dependent and context-independent word representations, we can obtain dramatic improvements and reach performance comparable to state-of-the-art on the competitive SQuAD dataset.Comment: 6 pages, 1 figure, NAACL 201

    Advanced LSTM: A Study about Better Time Dependency Modeling in Emotion Recognition

    Full text link
    Long short-term memory (LSTM) is normally used in recurrent neural network (RNN) as basic recurrent unit. However,conventional LSTM assumes that the state at current time step depends on previous time step. This assumption constraints the time dependency modeling capability. In this study, we propose a new variation of LSTM, advanced LSTM (A-LSTM), for better temporal context modeling. We employ A-LSTM in weighted pooling RNN for emotion recognition. The A-LSTM outperforms the conventional LSTM by 5.5% relatively. The A-LSTM based weighted pooling RNN can also complement the state-of-the-art emotion classification framework. This shows the advantage of A-LSTM

    Semi-tied Units for Efficient Gating in LSTM and Highway Networks

    Full text link
    Gating is a key technique used for integrating information from multiple sources by long short-term memory (LSTM) models and has recently also been applied to other models such as the highway network. Although gating is powerful, it is rather expensive in terms of both computation and storage as each gating unit uses a separate full weight matrix. This issue can be severe since several gates can be used together in e.g. an LSTM cell. This paper proposes a semi-tied unit (STU) approach to solve this efficiency issue, which uses one shared weight matrix to replace those in all the units in the same layer. The approach is termed "semi-tied" since extra parameters are used to separately scale each of the shared output values. These extra scaling factors are associated with the network activation functions and result in the use of parameterised sigmoid, hyperbolic tangent, and rectified linear unit functions. Speech recognition experiments using British English multi-genre broadcast data showed that using STUs can reduce the calculation and storage cost by a factor of three for highway networks and four for LSTMs, while giving similar word error rates to the original models.Comment: To appear in Proc. INTERSPEECH 2018, September 2-6, 2018, Hyderabad, Indi
    • …
    corecore