15,390 research outputs found

    Highly Robust Error Correction by Convex Programming

    Get PDF
    This paper discusses a stylized communications problem where one wishes to transmit a real-valued signal x ∈ ℝ^n (a block of n pieces of information) to a remote receiver. We ask whether it is possible to transmit this information reliably when a fraction of the transmitted codeword is corrupted by arbitrary gross errors, and when in addition, all the entries of the codeword are contaminated by smaller errors (e.g., quantization errors). We show that if one encodes the information as Ax where A ∈ ℝ^(m x n) (m ≥ n) is a suitable coding matrix, there are two decoding schemes that allow the recovery of the block of n pieces of information x with nearly the same accuracy as if no gross errors occurred upon transmission (or equivalently as if one had an oracle supplying perfect information about the sites and amplitudes of the gross errors). Moreover, both decoding strategies are very concrete and only involve solving simple convex optimization programs, either a linear program or a second-order cone program. We complement our study with numerical simulations showing that the encoder/decoder pair performs remarkably well

    Highly robust error correction by convex programming

    Full text link
    This paper discusses a stylized communications problem where one wishes to transmit a real-valued signal x in R^n (a block of n pieces of information) to a remote receiver. We ask whether it is possible to transmit this information reliably when a fraction of the transmitted codeword is corrupted by arbitrary gross errors, and when in addition, all the entries of the codeword are contaminated by smaller errors (e.g. quantization errors). We show that if one encodes the information as Ax where A is a suitable m by n coding matrix (m >= n), there are two decoding schemes that allow the recovery of the block of n pieces of information x with nearly the same accuracy as if no gross errors occur upon transmission (or equivalently as if one has an oracle supplying perfect information about the sites and amplitudes of the gross errors). Moreover, both decoding strategies are very concrete and only involve solving simple convex optimization programs, either a linear program or a second-order cone program. We complement our study with numerical simulations showing that the encoder/decoder pair performs remarkably well.Comment: 23 pages, 2 figure

    MAGMA: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization

    Full text link
    Composite convex optimization models arise in several applications, and are especially prevalent in inverse problems with a sparsity inducing norm and in general convex optimization with simple constraints. The most widely used algorithms for convex composite models are accelerated first order methods, however they can take a large number of iterations to compute an acceptable solution for large-scale problems. In this paper we propose to speed up first order methods by taking advantage of the structure present in many applications and in image processing in particular. Our method is based on multi-level optimization methods and exploits the fact that many applications that give rise to large scale models can be modelled using varying degrees of fidelity. We use Nesterov's acceleration techniques together with the multi-level approach to achieve O(1/ϵ)\mathcal{O}(1/\sqrt{\epsilon}) convergence rate, where ϵ\epsilon denotes the desired accuracy. The proposed method has a better convergence rate than any other existing multi-level method for convex problems, and in addition has the same rate as accelerated methods, which is known to be optimal for first-order methods. Moreover, as our numerical experiments show, on large-scale face recognition problems our algorithm is several times faster than the state of the art

    Channel-Optimized Quantum Error Correction

    Full text link
    We develop a theory for finding quantum error correction (QEC) procedures which are optimized for given noise channels. Our theory accounts for uncertainties in the noise channel, against which our QEC procedures are robust. We demonstrate via numerical examples that our optimized QEC procedures always achieve a higher channel fidelity than the standard error correction method, which is agnostic about the specifics of the channel. This demonstrates the importance of channel characterization before QEC procedures are applied. Our main novel finding is that in the setting of a known noise channel the recovery ancillas are redundant for optimized quantum error correction. We show this using a general rank minimization heuristic and supporting numerical calculations. Therefore, one can further improve the fidelity by utilizing all the available ancillas in the encoding block.Comment: 12 pages, 9 figure

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces
    corecore