2 research outputs found

    Higher-order CIS codes

    Full text link
    We introduce {\bf complementary information set codes} of higher-order. A binary linear code of length tktk and dimension kk is called a complementary information set code of order tt (tt-CIS code for short) if it has tt pairwise disjoint information sets. The duals of such codes permit to reduce the cost of masking cryptographic algorithms against side-channel attacks. As in the case of codes for error correction, given the length and the dimension of a tt-CIS code, we look for the highest possible minimum distance. In this paper, this new class of codes is investigated. The existence of good long CIS codes of order 33 is derived by a counting argument. General constructions based on cyclic and quasi-cyclic codes and on the building up construction are given. A formula similar to a mass formula is given. A classification of 3-CIS codes of length ≤12\le 12 is given. Nonlinear codes better than linear codes are derived by taking binary images of Z4\Z_4-codes. A general algorithm based on Edmonds' basis packing algorithm from matroid theory is developed with the following property: given a binary linear code of rate 1/t1/t it either provides tt disjoint information sets or proves that the code is not tt-CIS. Using this algorithm, all optimal or best known [tk,k][tk, k] codes where t=3,4,…,256t=3, 4, \dots, 256 and 1≤k≤⌊256/t⌋1 \le k \le \lfloor 256/t \rfloor are shown to be tt-CIS for all such kk and tt, except for t=3t=3 with k=44k=44 and t=4t=4 with k=37k=37.Comment: 13 pages; 1 figur

    Masks will Fall Off -- Higher-Order Optimal Distinguishers

    Get PDF
    Higher-order side-channel attacks are able to break the security of cryptographic implementations even if they are protected with masking countermeasures. In this paper, we derive the best possible distinguishers (High-Order Optimal Distinguishers or HOOD) against masking schemes under the assumption that the attacker can profile. Our exact derivation admits simple approximate expressions for high and low noise and shows to which extent the optimal distinguishers reduce to known attacks in the case where no profiling is possible. From these results, we can explain theoretically the empirical outcome of recent works on second-order distinguishers. In addition, we extend our analysis to any order and to the application to masked tables precomputation. Our results give some insight on which distinguishers have to be considered in the security analysis of cryptographic devices
    corecore