1,574,838 research outputs found

    Ask the GRU: Multi-Task Learning for Deep Text Recommendations

    Full text link
    In a variety of application domains the content to be recommended to users is associated with text. This includes research papers, movies with associated plot summaries, news articles, blog posts, etc. Recommendation approaches based on latent factor models can be extended naturally to leverage text by employing an explicit mapping from text to factors. This enables recommendations for new, unseen content, and may generalize better, since the factors for all items are produced by a compactly-parametrized model. Previous work has used topic models or averages of word embeddings for this mapping. In this paper we present a method leveraging deep recurrent neural networks to encode the text sequence into a latent vector, specifically gated recurrent units (GRUs) trained end-to-end on the collaborative filtering task. For the task of scientific paper recommendation, this yields models with significantly higher accuracy. In cold-start scenarios, we beat the previous state-of-the-art, all of which ignore word order. Performance is further improved by multi-task learning, where the text encoder network is trained for a combination of content recommendation and item metadata prediction. This regularizes the collaborative filtering model, ameliorating the problem of sparsity of the observed rating matrix.Comment: 8 page

    Real-Time Planning with Multi-Fidelity Models for Agile Flights in Unknown Environments

    Full text link
    Autonomous navigation through unknown environments is a challenging task that entails real-time localization, perception, planning, and control. UAVs with this capability have begun to emerge in the literature with advances in lightweight sensing and computing. Although the planning methodologies vary from platform to platform, many algorithms adopt a hierarchical planning architecture where a slow, low-fidelity global planner guides a fast, high-fidelity local planner. However, in unknown environments, this approach can lead to erratic or unstable behavior due to the interaction between the global planner, whose solution is changing constantly, and the local planner; a consequence of not capturing higher-order dynamics in the global plan. This work proposes a planning framework in which multi-fidelity models are used to reduce the discrepancy between the local and global planner. Our approach uses high-, medium-, and low-fidelity models to compose a path that captures higher-order dynamics while remaining computationally tractable. In addition, we address the interaction between a fast planner and a slower mapper by considering the sensor data not yet fused into the map during the collision check. This novel mapping and planning framework for agile flights is validated in simulation and hardware experiments, showing replanning times of 5-40 ms in cluttered environments.Comment: ICRA 201
    • …
    corecore