4,555 research outputs found

    Image analysis using visual saliency with applications in hazmat sign detection and recognition

    Get PDF
    Visual saliency is the perceptual process that makes attractive objects stand out from their surroundings in the low-level human visual system. Visual saliency has been modeled as a preprocessing step of the human visual system for selecting the important visual information from a scene. We investigate bottom-up visual saliency using spectral analysis approaches. We present separate and composite model families that generalize existing frequency domain visual saliency models. We propose several frequency domain visual saliency models to generate saliency maps using new spectrum processing methods and an entropy-based saliency map selection approach. A group of saliency map candidates are then obtained by inverse transform. A final saliency map is selected among the candidates by minimizing the entropy of the saliency map candidates. The proposed models based on the separate and composite model families are also extended to various color spaces. We develop an evaluation tool for benchmarking visual saliency models. Experimental results show that the proposed models are more accurate and efficient than most state-of-the-art visual saliency models in predicting eye fixation.^ We use the above visual saliency models to detect the location of hazardous material (hazmat) signs in complex scenes. We develop a hazmat sign location detection and content recognition system using visual saliency. Saliency maps are employed to extract salient regions that are likely to contain hazmat sign candidates and then use a Fourier descriptor based contour matching method to locate the border of hazmat signs in these regions. This visual saliency based approach is able to increase the accuracy of sign location detection, reduce the number of false positive objects, and speed up the overall image analysis process. We also propose a color recognition method to interpret the color inside the detected hazmat sign. Experimental results show that our proposed hazmat sign location detection method is capable of detecting and recognizing projective distorted, blurred, and shaded hazmat signs at various distances.^ In other work we investigate error concealment for scalable video coding (SVC). When video compressed with SVC is transmitted over loss-prone networks, the decompressed video can suffer severe visual degradation across multiple frames. In order to enhance the visual quality, we propose an inter-layer error concealment method using motion vector averaging and slice interleaving to deal with burst packet losses and error propagation. Experimental results show that the proposed error concealment methods outperform two existing methods

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Lucid Data Dreaming for Video Object Segmentation

    Full text link
    Convolutional networks reach top quality in pixel-level video object segmentation but require a large amount of training data (1k~100k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three evaluation datasets while using 20x~1000x less annotated data than competing methods. Our approach is suitable for both single and multiple object segmentation. Instead of using large training sets hoping to generalize across domains, we generate in-domain training data using the provided annotation on the first frame of each video to synthesize ("lucid dream") plausible future video frames. In-domain per-video training data allows us to train high quality appearance- and motion-based models, as well as tune the post-processing stage. This approach allows to reach competitive results even when training from only a single annotated frame, without ImageNet pre-training. Our results indicate that using a larger training set is not automatically better, and that for the video object segmentation task a smaller training set that is closer to the target domain is more effective. This changes the mindset regarding how many training samples and general "objectness" knowledge are required for the video object segmentation task.Comment: Accepted in International Journal of Computer Vision (IJCV
    • …
    corecore