6 research outputs found

    Light field super resolution through controlled micro-shifts of light field sensor

    Get PDF
    Light field cameras enable new capabilities, such as post-capture refocusing and aperture control, through capturing directional and spatial distribution of light rays in space. Micro-lens array based light field camera design is often preferred due to its light transmission efficiency, cost-effectiveness and compactness. One drawback of the micro-lens array based light field cameras is low spatial resolution due to the fact that a single sensor is shared to capture both spatial and angular information. To address the low spatial resolution issue, we present a light field imaging approach, where multiple light fields are captured and fused to improve the spatial resolution. For each capture, the light field sensor is shifted by a pre-determined fraction of a micro-lens size using an XY translation stage for optimal performance

    Multidimensional image enhancement from a set of unregistered differently exposed images

    Get PDF
    If multiple images of a scene are available instead of a single image, we can use the additional information conveyed by the set of images to generate a higher quality image. This can be done along multiple dimensions. Super-resolution algorithms use a set of shifted and rotated low resolution images to create a high resolution image. High dynamic range imaging techniques combine images with different exposure times to generate an image with a higher dynamic range. In this paper, we present a novel method to combine both techniques and construct a high resolution, high dynamic range image from a set of shifted images with varying exposure times. We first estimate the camera response function, and convert each of the input images to an exposure invariant space. Next, we estimate the motion between the input images. Finally, we reconstruct a high resolution, high dynamic range image using an interpolation from the non-uniformly sampled pixels. Applications of such an approach can be found in various domains, such as surveillance cameras, consumer digital cameras, etc

    A Computer Vision Story on Video Sequences::From Face Detection to Face Super- Resolution using Face Quality Assessment

    Get PDF

    High-resolution image reconstruction from multiple differently exposed images

    No full text

    Correspondence problems in computer vision : novel models, numerics, and applications

    Get PDF
    Correspondence problems like optic flow belong to the fundamental problems in computer vision. Here, one aims at finding correspondences between the pixels in two (or more) images. The correspondences are described by a displacement vector field that is often found by minimising an energy (cost) function. In this thesis, we present several contributions to the energy-based solution of correspondence problems: (i) We start by developing a robust data term with a high degree of invariance under illumination changes. Then, we design an anisotropic smoothness term that works complementary to the data term, thereby avoiding undesirable interference. Additionally, we propose a simple method for determining the optimal balance between the two terms. (ii) When discretising image derivatives that occur in our continuous models, we show that adapting one-sided upwind discretisations from the field of hyperbolic differential equations can be beneficial. To ensure a fast solution of the nonlinear system of equations that arises when minimising the energy, we use the recent fast explicit diffusion (FED) solver in an explicit gradient descent scheme. (iii) Finally, we present a novel application of modern optic flow methods where we align exposure series used in high dynamic range (HDR) imaging. Furthermore, we show how the alignment information can be used in a joint super-resolution and HDR method.Korrespondenzprobleme wie der optische Fluß, gehören zu den fundamentalen Problemen im Bereich des maschinellen Sehens (Computer Vision). Hierbei ist das Ziel, Korrespondenzen zwischen den Pixeln in zwei (oder mehreren) Bildern zu finden. Die Korrespondenzen werden durch ein Verschiebungsvektorfeld beschrieben, welches oft durch Minimierung einer Energiefunktion (Kostenfunktion) gefunden wird. In dieser Arbeit stellen wir mehrere Beiträge zur energiebasierten Lösung von Korrespondenzproblemen vor: (i) Wir beginnen mit der Entwicklung eines robusten Datenterms, der ein hohes Maß an Invarianz unter Beleuchtungsänderungen aufweißt. Danach entwickeln wir einen anisotropen Glattheitsterm, der komplementär zu dem Datenterm wirkt und deshalb keine unerwünschten Interferenzen erzeugt. Zusätzlich schlagen wir eine einfache Methode vor, die es erlaubt die optimale Balance zwischen den beiden Termen zu bestimmen. (ii) Im Zuge der Diskretisierung von Bildableitungen, die in unseren kontinuierlichen Modellen auftauchen, zeigen wir dass es hilfreich sein kann, einseitige upwind Diskretisierungen aus dem Bereich hyperbolischer Differentialgleichungen zu übernehmen. Um eine schnelle Lösung des nichtlinearen Gleichungssystems, dass bei der Minimierung der Energie auftaucht, zu gewährleisten, nutzen wir den kürzlich vorgestellten fast explicit diffusion (FED) Löser im Rahmen eines expliziten Gradientenabstiegsschemas. (iii) Schließlich stellen wir eine neue Anwendung von modernen optischen Flußmethoden vor, bei der Belichtungsreihen für high dynamic range (HDR) Bildgebung registriert werden. Außerdem zeigen wir, wie diese Registrierungsinformation in einer kombinierten super-resolution und HDR Methode genutzt werden kann
    corecore