6 research outputs found

    M3-AUDIODEC: Multi-channel multi-speaker multi-spatial audio codec

    Full text link
    We introduce M3-AUDIODEC, an innovative neural spatial audio codec designed for efficient compression of multi-channel (binaural) speech in both single and multi-speaker scenarios, while retaining the spatial location information of each speaker. This model boasts versatility, allowing configuration and training tailored to a predetermined set of multi-channel, multi-speaker, and multi-spatial overlapping speech conditions. Key contributions are as follows: 1) Previous neural codecs are extended from single to multi-channel audios. 2) The ability of our proposed model to compress and decode for overlapping speech. 3) A groundbreaking architecture that compresses speech content and spatial cues separately, ensuring the preservation of each speaker's spatial context after decoding. 4) M3-AUDIODEC's proficiency in reducing the bandwidth for compressing two-channel speech by 48% when compared to individual binaural channel compression. Impressively, at a 12.6 kbps operation, it outperforms Opus at 24 kbps and AUDIODEC at 24 kbps by 37% and 52%, respectively. In our assessment, we employed speech enhancement and room acoustic metrics to ascertain the accuracy of clean speech and spatial cue estimates from M3-AUDIODEC. Audio demonstrations and source code are available online at https://github.com/anton-jeran/MULTI-AUDIODEC .Comment: More results and source code are available at https://anton-jeran.github.io/MAD

    Cascaded Cross-Module Residual Learning towards Lightweight End-to-End Speech Coding

    Full text link
    Speech codecs learn compact representations of speech signals to facilitate data transmission. Many recent deep neural network (DNN) based end-to-end speech codecs achieve low bitrates and high perceptual quality at the cost of model complexity. We propose a cross-module residual learning (CMRL) pipeline as a module carrier with each module reconstructing the residual from its preceding modules. CMRL differs from other DNN-based speech codecs, in that rather than modeling speech compression problem in a single large neural network, it optimizes a series of less-complicated modules in a two-phase training scheme. The proposed method shows better objective performance than AMR-WB and the state-of-the-art DNN-based speech codec with a similar network architecture. As an end-to-end model, it takes raw PCM signals as an input, but is also compatible with linear predictive coding (LPC), showing better subjective quality at high bitrates than AMR-WB and OPUS. The gain is achieved by using only 0.9 million trainable parameters, a significantly less complex architecture than the other DNN-based codecs in the literature.Comment: Accepted for publication in INTERSPEECH 201

    Neural Feature Predictor and Discriminative Residual Coding for Low-Bitrate Speech Coding

    Full text link
    Low and ultra-low-bitrate neural speech coding achieves unprecedented coding gain by generating speech signals from compact speech features. This paper introduces additional coding efficiency in neural speech coding by reducing the temporal redundancy existing in the frame-level feature sequence via a recurrent neural predictor. The prediction can achieve a low-entropy residual representation, which we discriminatively code based on their contribution to the signal reconstruction. The harmonization of feature prediction and discriminative coding results in a dynamic bit allocation algorithm that spends more bits on unpredictable but rare events. As a result, we develop a scalable, lightweight, low-latency, and low-bitrate neural speech coding system. We demonstrate the advantage of the proposed methods using the LPCNet as a neural vocoder. While the proposed method guarantees causality in its prediction, the subjective tests and feature space analysis show that our model achieves superior coding efficiency compared to LPCNet and Lyra V2 in the very low bitrates
    corecore