2 research outputs found

    Adaptive Transmission Range Based Topology Control Scheme for Fast and Reliable Data Collection

    Get PDF
    An Adaptive Transmission Range Based Topology Control (ATRTC) scheme is proposed to reduce delay and improve reliability for data collection in delay and loss sensitive wireless sensor network. The core idea of the ATRTC scheme is to extend the transmission range to speed up data collection and improve the reliability of data collection.The main innovations of our work are as follows: (1) an adaptive transmission range adjustment method is proposed to improve data collection reliability and reduce data collection delay. The expansion of the transmission range will allow the data packet to be received by more receivers, thus improving the reliability of data transmission. On the other hand, by extending the transmission range, data packets can be transmitted to the sink with fewer hops.Thereby the delay of data collection is reduced and the reliability of data transmission is improved. Extending the transmission range will consume more energy. Fortunately, we found the imbalanced energy consumption of the network.There is a large amount of energy remains when the network died. ATRTC scheme proposed in this paper can make full use of the residual energy to extend the transmission range of nodes. Because of the expansion of transmission range, nodes in the network form multiple paths for data collection to the sink node.Therefore, the volume of data received and sent by the near-sink nodes is reduced, the energy consumption of the near-sink nodes is reduced, and the network lifetime is increased as well. (2)According to the analysis in this paper, compared with the CTPR scheme, the ATRTC scheme reduces the maximum energy consumption by 9%, increases the network lifetime by 10%, increases the data collection reliability by 7.3%, and reduces the network data collection time by 23%

    Trust-based energy efficient routing protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of a number of distributed sensor nodes that are connected within a specified area. Generally, WSN is used for monitoring purposes and can be applied in many fields including health, environmental and habitat monitoring, weather forecasting, home automation, and in the military. Similar, to traditional wired networks, WSNs require security measures to ensure a trustworthy environment for communication. However, due to deployment scenarios nodes are exposed to physical capture and inclusion of malicious node led to internal network attacks hence providing the reliable delivery of data and trustworthy communication environment is a real challenge. Also, malicious nodes intentionally dropping data packets, spreading false reporting, and degrading the network performance. Trust based security solutions are regarded as a significant measure to improve the sensor network security, integrity, and identification of malicious nodes. Another extremely important issue for WSNs is energy conversation and efficiency, as energy sources and battery capacity are often limited, meaning that the implementation of efficient, reliable data delivery is an equally important consideration that is made more challenging due to the unpredictable behaviour of sensor nodes. Thus, this research aims to develop a trust and energy efficient routing protocol that ensures a trustworthy environment for communication and reliable delivery of data. Firstly, a Belief based Trust Evaluation Scheme (BTES) is proposed that identifies malicious nodes and maintains a trustworthy environment among sensor nodes while reducing the impact of false reporting. Secondly, a State based Energy Calculation Scheme (SECS) is proposed which periodically evaluates node energy levels, leading to increased network lifetime. Finally, as an integrated outcome of these two schemes, a Trust and Energy Efficient Path Selection (TEEPS) protocol has been proposed. The proposed protocol is benchmarked with A Trust-based Neighbour selection system using activation function (AF-TNS), and with A Novel Trust of dynamic optimization (Trust-Doe). The experimental results show that the proposed protocol performs better as compared to existing schemes in terms of throughput (by 40.14%), packet delivery ratio (by 28.91%), and end-to-end delay (by 41.86%). In conclusion, the proposed routing protocol able to identify malicious nodes provides a trustworthy environment and improves network energy efficiency and lifetime
    corecore