8,034 research outputs found

    MLET: A Power Efficient Approach for TCAM Based, IP Lookup Engines in Internet Routers

    Full text link
    Routers are one of the important entities in computer networks specially the Internet. Forwarding IP packets is a valuable and vital function in Internet routers. Routers extract destination IP address from packets and lookup those addresses in their own routing table. This task is called IP lookup. Internet address lookup is a challenging problem due to the increasing routing table sizes. Ternary Content-Addressable Memories (TCAMs) are becoming very popular for designing high-throughput address lookup-engines on routers: they are fast, cost-effective and simple to manage. Despite the TCAMs speed, their high power consumption is their major drawback. In this paper, Multilevel Enabling Technique (MLET), a power efficient TCAM based hardware architecture has been proposed. This scheme is employed after an Espresso-II minimization algorithm to achieve lower power consumption. The performance evaluation of the proposed approach shows that it can save considerable amount of routing table's power consumption.Comment: 14 Pages, IJCNC 201

    An algorithm for fast route lookup and update

    Get PDF
    Increase in routing table sizes, number of updates, traffic, speed of links and migration to IPv6 have made IP address lookup, based on longest prefix matching, a major bottleneck for high performance routers. Several schemes are evaluated and compared based on complexity analysis and simulation results. A trie based scheme, called Linked List Cascade Addressable Trie (LLCAT) is presented. The strength of LLCAT comes from the fact that it is easy to be implemented in hardware, and also routing table update operations are performed incrementally requiring very few memory operations guaranteed for worst case to satisfy requirements of dynamic routing tables in high speed routers. Application of compression schemes to this algorithm is also considered to improve memory consumption and search time. The algorithm is implemented in C language and simulation results with real-life data is presented along with detailed description of the algorithm

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    A low-power network search engine based on statistical partitioning

    Get PDF
    Network search engines based on Ternary CAMs are widely used in routers. However, due to parallel search nature of TCAMs power consumption becomes a critical issue. In this work we propose an architecture that partitions the lookup table into multiple TCAM chips based on individual TCAM cell status and achieves lower power figures
    • …
    corecore