1,512 research outputs found

    Application of Operator Splitting Methods in Finance

    Full text link
    Financial derivatives pricing aims to find the fair value of a financial contract on an underlying asset. Here we consider option pricing in the partial differential equations framework. The contemporary models lead to one-dimensional or multidimensional parabolic problems of the convection-diffusion type and generalizations thereof. An overview of various operator splitting methods is presented for the efficient numerical solution of these problems. Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed for multidimensional problems, e.g. given by stochastic volatility (SV) models. For jump models Implicit-Explicit (IMEX) methods are considered which efficiently treat the nonlocal jump operator. For American options an easy-to-implement operator splitting method is described for the resulting linear complementarity problems. Numerical experiments are presented to illustrate the actual stability and convergence of the splitting schemes. Here European and American put options are considered under four asset price models: the classical Black-Scholes model, the Merton jump-diffusion model, the Heston SV model, and the Bates SV model with jumps

    Pricing Options under Hestonā€™s Stochastic Volatility Model via Accelerated Explicit Finite Differencing Methods

    Get PDF
    We present an acceleration technique, effective for explicit finite difference schemes describing diffusive processes with nearly symmetric operators, called Super-Time-Stepping (STS). The technique is applied to the two-factor problem of option pricing under stochastic volatility. It is shown to significantly reduce the severity of the stability constraint known as the Courant-Friedrichs-Lewy condition whilst retaining the simplicity of the chosen underlying explicit method. For European and American put options under Hestonā€™s stochastic volatility model we demonstrate degrees of acceleration over standard explicit methods sufficient to achieve comparable, or superior, efficiencies to a benchmark implicit scheme. We conclude that STS is a powerful tool for the numerical pricing of options and propose them as the method-of-choice for exotic financial instruments in two and multi-factor models.

    Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models

    Full text link
    European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD). The early exercise constraint of American options is enforced by a penalty on subset of grid points. The presented numerical experiments demonstrate that pricing with ROMs can be orders of magnitude faster within a given model parameter variation range

    High-order compact finite difference scheme for option pricing in stochastic volatility jump models

    Get PDF
    We derive a new high-order compact finite difference scheme for option pricing in stochastic volatility jump models, e.g. in Bates model. In such models the option price is determined as the solution of a partial integro-differential equation. The scheme is fourth order accurate in space and second order accurate in time. Numerical experiments for the European option pricing problem are presented. We validate the stability of the scheme numerically and compare its performance to standard finite difference and finite element methods. The new scheme outperforms a standard discretisation based on a second-order central finite difference approximation in all our experiments. At the same time, it is very efficient, requiring only one initial -factorisation of a sparse matrix to perform the option price valuation. Compared to finite element approaches, it is very parsimonious in terms of memory requirements and computational effort, since it achieves high-order convergence without requiring additional unknowns, unlike finite element methods with higher polynomial order basis functions. The new high-order compact scheme can also be useful to upgrade existing implementations based on standard finite differences in a straightforward manner to obtain a highly efficient option pricing code

    The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines

    Get PDF
    This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston (1993), and by a Poisson jump process of the type originally introduced by Merton (1976). We develop a method of lines algorithm to evaluate the price as well as the delta and gamma of the option, thereby extending the method developed by Meyer (1998) for the case of jump-diffusion dynamics. The accuracy of the method is tested against two numerical methods that directly solve the integro-partial differential pricing equation. The first is an extension to the jump-diffusion situation of the componentwise splitting method of Ikonen & Toivanen (2007). The second method is a Crank-Nicolson scheme that is solved using projected successive over relaxation which is taken as the benchmark. The relative efficiency of these methods for computing the American call option price, delta, gamma and free boundary is analysed. If one seeks an algorithm that gives not only the price but also the delta and gamma to the same level of accuracy for a given computational effort then the method of lines seems to perform best amongst the methods considered.American options; stochastic volatility; jump-diffusion processes; Volterra integral equations; free boundary problem; method of lines

    Pricing American Options on Jump-Diffusion Processes using Fourier Hermite Series Expansions

    Get PDF
    This paper presents a numerical method for pricing American call options where the underlying asset price follows a jump-diffusion process. The method is based on the Fourier-Hermite series expansions of Chiarella, El-Hassan & Kucera (1999), which we extend to allow for Poisson jumps, in the case where the jump sizes are log-normally distributed. The series approximation is applied to both European and American call options, and algorithms are presented for calculating the option price in each case. Since the series expansions only require discretisation in time to be implemented, the resulting price approximations require no asset price interpolation, and for certain maturities are demonstrated to produce both accurate and efficient solutions when compared with alternative methods, such as numerical integration, the method of lines and finite difference schemes.American options; jump-diusion; Fourier-Hermite series expansions; free boundary problem
    • ā€¦
    corecore