428 research outputs found

    Meshfree Finite Differences for Vector Poisson and Pressure Poisson Equations with Electric Boundary Conditions

    Get PDF
    We demonstrate how meshfree finite difference methods can be applied to solve vector Poisson problems with electric boundary conditions. In these, the tangential velocity and the incompressibility of the vector field are prescribed at the boundary. Even on irregular domains with only convex corners, canonical nodalbased finite elements may converge to the wrong solution due to a version of the Babuška paradox. In turn, straightforward meshfree finite differences converge to the true solution, and even high-order accuracy can be achieved in a simple fashion. The methodology is then extended to a specific pressure Poisson equation reformulation of the Navier-Stokes equations that possesses the same type of boundary conditions. The resulting numerical approach is second order accurate and allows for a simple switching between an explicit and implicit treatment of the viscosity terms. Keywords: Meshfree Finite-differences; Navier-Stokes; Incompressible; Vector Poisson equation; Pressure Poisson equation; Reformulation; Manufactured solution; High-orderNational Science Foundation (U.S.) (Grant DMS–1318942

    High-order Methods for a Pressure Poisson Equation Reformulation of the Navier-Stokes Equations with Electric Boundary Conditions

    Full text link
    Pressure Poisson equation (PPE) reformulations of the incompressible Navier-Stokes equations (NSE) replace the incompressibility constraint by a Poisson equation for the pressure and a suitable choice of boundary conditions. This yields a time-evolution equation for the velocity field only, with the pressure gradient acting as a nonlocal operator. Thus, numerical methods based on PPE reformulations, in principle, have no limitations in achieving high order. In this paper, it is studied to what extent high-order methods for the NSE can be obtained from a specific PPE reformulation with electric boundary conditions (EBC). To that end, implicit-explicit (IMEX) time-stepping is used to decouple the pressure solve from the velocity update, while avoiding a parabolic time-step restriction; and mixed finite elements are used in space, to capture the structure imposed by the EBC. Via numerical examples, it is demonstrated that the methodology can yield at least third order accuracy in space and time

    Meshfree finite differences for vector Poisson and pressure Poisson equations with electric boundary conditions

    Full text link
    We demonstrate how meshfree finite difference methods can be applied to solve vector Poisson problems with electric boundary conditions. In these, the tangential velocity and the incompressibility of the vector field are prescribed at the boundary. Even on irregular domains with only convex corners, canonical nodal-based finite elements may converge to the wrong solution due to a version of the Babuska paradox. In turn, straightforward meshfree finite differences converge to the true solution, and even high-order accuracy can be achieved in a simple fashion. The methodology is then extended to a specific pressure Poisson equation reformulation of the Navier-Stokes equations that possesses the same type of boundary conditions. The resulting numerical approach is second order accurate and allows for a simple switching between an explicit and implicit treatment of the viscosity terms.Comment: 19 pages, 7 figure

    An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field

    Get PDF
    This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force. When the magnetic field is large, the so-called drift-fluid approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler-Lorentz system. This scheme gives rise to both a consistent approximation of the Euler-Lorentz model when epsilon is finite and a consistent approximation of the drift limit when epsilon tends to 0. Above all, it does not require any constraint on the space and time steps related to the small value of epsilon. Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability

    Comparison and numerical treatment of generalized Nernst--Planck models

    Get PDF
    In its most widespread, classical formulation, the Nernst-Planck-Poisson system for ion transport in electrolytes fails to take into account finite ion sizes. As a consequence, it predicts unphysically high ion concentrations near electrode surfaces. Historical and recent approaches to an approriate modification of the model are able to fix this problem. Several appropriate formulations are compared in this paper. The resulting equations are reformulated using absolute activities as basic variables describing the species amounts. This reformulation allows to introduce a straightforward generalisation of the Scharfetter-Gummel finite volume discretization scheme for drift-diffusion equations. It is shown that it is thermodynamically consistent in the sense that the solution of the corresponding discretized generalized Poisson-Boltzmann system describing the thermodynamic equilibrium is a stationary state of the discretized time-dependent generalized Nernst-Planck system. Numerical examples demonstrate the improved physical correctness of the generalised models and the feasibility of the numerical approach

    Models and numerical methods for electrolyte flows

    Get PDF
    The most common mathematical models for electrolyte flows are based on the dilute solution assumption, leading to a coupled system of the Nernst--Planck--Poisson drift-diffusion equations for ion transport and the Stokes resp. Navier--Stokes equations for fluid flow. This contribution discusses historical and recent model developments beyond the dilute solution assumption and focuses on the effects of finite ion sizes and solvation. A novel numerical solution approach is presented and verified here which aims at preserving on the discrete level consistency with basic thermodynamic principles and structural properties like independence of flow velocities from gradient contributions to external forces

    Self-consistent modeling of laminar electrohydrodynamic plumes from ultrasharp needles in cyclohexane

    Get PDF
    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. Physics of Fluids 12, 2809 (2000) when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a highdensity charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the Finite Element Method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage (IV) characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.Ministerio de Economía y Competitividad FIS2014-54539-P

    Transient electrohydrodynamic flow with concentration dependent fluid properties: modelling and energy-stable numerical schemes

    Get PDF
    Transport of electrolytic solutions under influence of electric fields occurs in phenomena ranging from biology to geophysics. Here, we present a continuum model for single-phase electrohydrodynamic flow, which can be derived from fundamental thermodynamic principles. This results in a generalized Navier-Stokes-Poisson-Nernst-Planck system, where fluid properties such as density and permittivity depend on the ion concentration fields. We propose strategies for constructing numerical schemes for this set of equations, where solving the electrochemical and the hydrodynamic subproblems are decoupled at each time step. We provide time discretizations of the model that suffice to satisfy the same energy dissipation law as the continuous model. In particular, we propose both linear and non-linear discretizations of the electrochemical subproblem, along with a projection scheme for the fluid flow. The efficiency of the approach is demonstrated by numerical simulations using several of the proposed schemes

    Multiphysics simulation of corona discharge induced ionic wind

    Full text link
    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices, whose main benefit is the ability to accurately predict the amount of charge injected at the corona electrode. Our multiphysics numerical model consists of a highly nonlinear strongly coupled set of PDEs including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are validated by comparison with experimental measurements and are shown to closely match. Finally, our simulation tool is used to estimate the effectiveness of the design of an electrohydrodynamic cooling apparatus for power electronics applications.Comment: 24 pages, 17 figure
    corecore