1,695,487 research outputs found

    A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

    Full text link
    Recently, Minimum Cost Multicut Formulations have been proposed and proven to be successful in both motion trajectory segmentation and multi-target tracking scenarios. Both tasks benefit from decomposing a graphical model into an optimal number of connected components based on attractive and repulsive pairwise terms. The two tasks are formulated on different levels of granularity and, accordingly, leverage mostly local information for motion segmentation and mostly high-level information for multi-target tracking. In this paper we argue that point trajectories and their local relationships can contribute to the high-level task of multi-target tracking and also argue that high-level cues from object detection and tracking are helpful to solve motion segmentation. We propose a joint graphical model for point trajectories and object detections whose Multicuts are solutions to motion segmentation {\it and} multi-target tracking problems at once. Results on the FBMS59 motion segmentation benchmark as well as on pedestrian tracking sequences from the 2D MOT 2015 benchmark demonstrate the promise of this joint approach

    Efficient single photon absorption by a trapped moving atom

    Full text link
    The influence of the center of mass motion of a trapped two level system on efficient resonant single photon absorption is investigated. It is shown that this absorption process depends strongly on the ratio between the characteristic time scales of spontaneous photon emission and of the two level system's center of mass motion. In particular, if the spontaneous photon emission process occurs almost instantaneously on the time scale of the center of mass motion coherent control of the center of mass motion offers interesting perspectives for optimizing single photon absorption. It is demonstrated that this way time dependent modulation of a harmonic trapping frequency allows to squeeze the two level system's center of mass motion so strongly that high efficient single photon absorption is possible even in cases of weak confinement by a trapping potential.Comment: 9 pages, 5 figure

    Effects of crowding and attention on high-levels of motion processing and motion adaptation

    Get PDF
    The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention

    Learning recurrent representations for hierarchical behavior modeling

    Get PDF
    We propose a framework for detecting action patterns from motion sequences and modeling the sensory-motor relationship of animals, using a generative recurrent neural network. The network has a discriminative part (classifying actions) and a generative part (predicting motion), whose recurrent cells are laterally connected, allowing higher levels of the network to represent high level phenomena. We test our framework on two types of data, fruit fly behavior and online handwriting. Our results show that 1) taking advantage of unlabeled sequences, by predicting future motion, significantly improves action detection performance when training labels are scarce, 2) the network learns to represent high level phenomena such as writer identity and fly gender, without supervision, and 3) simulated motion trajectories, generated by treating motion prediction as input to the network, look realistic and may be used to qualitatively evaluate whether the model has learnt generative control rules

    Cooling of mechanical motion with a two level system: the high temperature regime

    Full text link
    We analyze cooling of a nano-mechanical resonator coupled to a dissipative solid state two level system focusing on the regime of high initial temperatures. We derive an effective Fokker-Planck equation for the mechanical mode which accounts for saturation and other non-linear effects and allows us to study the cooling dynamics of the resonator mode for arbitrary occupation numbers. We find a degrading of the cooling rates and eventually a breakdown of cooling at very high initial temperatures and discuss the dependence of these effects on various system parameters. Our results apply to most solid state systems which have been proposed for cooling a mechanical resonator including quantum dots, superconducting qubits and electronic spin qubits

    Neuropsychological evidence for three distinct motion mechanisms

    Full text link
    Published in final edited form as: Neurosci Lett. 2011 May 16; 495(2): 102–106. doi:10.1016/j.neulet.2011.03.048.We describe psychophysical performance of two stroke patients with lesions in distinct cortical regions in the left hemisphere. Both patients were selectively impaired on direction discrimination in several local and global second-order but not first-order motion tasks. However, only patient FD was impaired on a specific bi-stable motion task where the direction of motion is biased by object similarity. We suggest that this bi-stable motion task may be mediated by a high-level attention or position based mechanism indicating a separate neurological substrate for a high-level attention or position-based mechanism. Therefore, these results provide evidence for the existence of at least three motion mechanisms in the human visual system: a low-level first- and second-order motion mechanism and a high-level attention or position-based mechanism.Accepted manuscrip
    corecore