1,435 research outputs found

    Nearly optimal Bayesian Shrinkage for High Dimensional Regression

    Full text link
    During the past decade, shrinkage priors have received much attention in Bayesian analysis of high-dimensional data. In this paper, we study the problem for high-dimensional linear regression models. We show that if the shrinkage prior has a heavy and flat tail, and allocates a sufficiently large probability mass in a very small neighborhood of zero, then its posterior properties are as good as those of the spike-and-slab prior. While enjoying its efficiency in Bayesian computation, the shrinkage prior can lead to a nearly optimal contraction rate and selection consistency as the spike-and-slab prior. Our numerical results show that under posterior consistency, Bayesian methods can yield much better results in variable selection than the regularization methods, such as Lasso and SCAD. We also establish a Bernstein von-Mises type results comparable to Castillo et al (2015), this result leads to a convenient way to quantify uncertainties of the regression coefficient estimates, which has been beyond the ability of regularization methods

    Prior distributions for objective Bayesian analysis

    Get PDF
    We provide a review of prior distributions for objective Bayesian analysis. We start by examining some foundational issues and then organize our exposition into priors for: i) estimation or prediction; ii) model selection; iii) highdimensional models. With regard to i), we present some basic notions, and then move to more recent contributions on discrete parameter space, hierarchical models, nonparametric models, and penalizing complexity priors. Point ii) is the focus of this paper: it discusses principles for objective Bayesian model comparison, and singles out some major concepts for building priors, which are subsequently illustrated in some detail for the classic problem of variable selection in normal linear models. We also present some recent contributions in the area of objective priors on model space.With regard to point iii) we only provide a short summary of some default priors for high-dimensional models, a rapidly growing area of research
    • …
    corecore