8 research outputs found

    An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC

    Get PDF
    Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage standard for the entire IC. The accuracy of the bandgap reference voltage under steady-state (dc) and transient (ac) conditions is critical to obtain high system performance. In this work, the impact of process, power-supply, load, and temperature variations and package stresses on the dc and ac accuracy of bandgap reference circuits has been analyzed. Based on this analysis, the a bandgap reference that 1. has high dc accuracy despite process and temperature variations and package stresses, without resorting to expensive trimming or noisy switching schemes, 2. has high dc and ac accuracy despite power-supply variations, without using large off-chip capacitors that increase bill-of-material costs, 3. has high dc and ac accuracy despite load variations, without resorting to error-inducing buffers, 4. is capable of producing a sub-bandgap reference voltage with a low power-supply, to enable it to operate in modern, battery-operated portable applications, 5. utilizes a standard CMOS process, to lower manufacturing costs, and 6. is integrated, to consume less board space has been proposed. The functionality of critical components of the system has been verified through prototypes after which the performance of the complete system has been evaluated by integrating all the individual components on an IC. The proposed CMOS bandgap reference can withstand 5mA of load variations while generating a reference voltage of 890mV that is accurate with respect to temperature to the first order. It exhibits a trimless, dc 3-sigma accuracy performance of 0.84% over a temperature range of -40°C to 125°C and has a worst case ac power-supply ripple rejection (PSRR) performance of 30dB up to 50MHz using 60pF of on-chip capacitance. All the proposed techniques lead to the development of a CMOS bandgap reference that meets the low-cost, high-accuracy demands of state-of-the-art System-on-Chip environments.Ph.D.Committee Chair: Rincon-Mora, Gabriel; Committee Member: Ayazi, Farrokh; Committee Member: Bhatti, Pamela; Committee Member: Leach, W. Marshall; Committee Member: Morley, Thoma

    NEGATIVE BIAS TEMPERATURE INSTABILITY STUDIES FOR ANALOG SOC CIRCUITS

    Get PDF
    Negative Bias Temperature Instability (NBTI) is one of the recent reliability issues in sub threshold CMOS circuits. NBTI effect on analog circuits, which require matched device pairs and mismatches, will cause circuit failure. This work is to assess the NBTI effect considering the voltage and the temperature variations. It also provides a working knowledge of NBTI awareness to the circuit design community for reliable design of the SOC analog circuit. There have been numerous studies to date on the NBTI effect to analog circuits. However, other researchers did not study the implication of NBTI stress on analog circuits utilizing bandgap reference circuit. The reliability performance of all matched pair circuits, particularly the bandgap reference, is at the mercy of aging differential. Reliability simulation is mandatory to obtain realistic risk evaluation for circuit design reliability qualification. It is applicable to all circuit aging problems covering both analog and digital. Failure rate varies as a function of voltage and temperature. It is shown that PMOS is the reliabilitysusceptible device and NBTI is the most vital failure mechanism for analog circuit in sub-micrometer CMOS technology. This study provides a complete reliability simulation analysis of the on-die Thermal Sensor and the Digital Analog Converter (DAC) circuits and analyzes the effect of NBTI using reliability simulation tool. In order to check out the robustness of the NBTI-induced SOC circuit design, a bum-in experiment was conducted on the DAC circuits. The NBTI degradation observed in the reliability simulation analysis has given a clue that under a severe stress condition, a massive voltage threshold mismatch of beyond the 2mV limit was recorded. Bum-in experimental result on DAC proves the reliability sensitivity of NBTI to the DAC circuitry

    Design of Digital SoC for Operation at High Temperatures

    Get PDF
    There is a growing demand for Systems-on-Chip, integrating microprocessors, on-chip memories, data converters and a variety of sensors, which are capable of reliable operation at high temperatures. For instance, modern aircraft industry demands microcontrollers and electric motors to operate at high temperatures, in order to replace present hydraulic structures. This thesis explains how to design digital SoC which are capable of reliable operation at high temperatures. The essential part of this thesis focuses on the design, implementation, fabrication and high-temperature measurements of on-chip Latch based SRAM, PowerPC e200 based microcontroller, digital temperature sensor and Flash A/D converter. Embedded on-chip SRAM modules are one of the most important components in the modern SoC. We analyze thermally-caused failures in the 6T SRAM cell and elaborate on its reliability. Further, we show that Latch based SRAM modules are preferable to 6T SRAM for reliable operation beyond 150C, by comparing two 1kB SRAM modules implemented in standard 0.18um SOI CMOS process. We demonstrate reliable SRAM operation at 275C (fmax = 10MHz, Ptot = 400mW), that is by far the highest reported operating temperature for digital on-chip SRAM module. Designing SoCs for reliable operation at elevated temperatures is a significant challenge, due to increased static leakage current, reduced carrier mobility, and increased electromigration. We propose to customize a PowerPC e200 based SoC by using a dynamically reconfigurable clock frequency, exhaustive clock gating, and electromigration-resistant power distribution network. We fabricated a 20x9mm2 chip implementing this design in 0.35um Bulk CMOS process. We present worldâs first PowerPC based SoC for reliable operation at 225C (fmax = 30MHz, Ptot = 1.2W). This design outperforms previously reported PowerPC based SoCs, which are not operational at temperatures beyond 125C. The on-chip measurements of the p-n junction temperature allow reliability improvements for the SoC that operates at high temperatures. Low-resolution temperature measurements are efficiently used for adjusting the optimal operation frequency and supply voltage. We used the Time-to-Digital conversion technique to design a fully-digital temperature sensor. We designed and simulated a fully-digital 5bit temperature sensor for 10C resolution temperature measurements in between Tj,min = -45C and Tj,max = 125C. Further, using a single clock cycle Time-to-Digital conversion technique, we present a fully-digital 5bit Pulse based Flash ADC implemented in 0.18um Bulk CMOS process. Measurement results demonstrate the state-of-the-art power efficiency result of 450 fJ/conv (fmax = 83MHz, Ptot = 900uW)

    Design and Implementation of Low Power SRAM Using Highly Effective Lever Shifters

    Get PDF
    The explosive growth of battery-operated devices has made low-power design a priority in recent years. In high-performance Systems-on-Chip, leakage power consumption has become comparable to the dynamic component, and its relevance increases as technology scales. These trends are even more evident for SRAM memory devices since they are a dominant source of standby power consumption in low-power application processors. The on-die SRAM power consumption is particularly important for increasingly pervasive mobile and handheld applications where battery life is a key design and technology attribute. In the SRAM-memory design, SRAM cells also comprise the most significant portion of the total chip. Moreover, the increasing number of transistors in the SRAM memories and the MOSs\u27 increasing leakage current in the scaled technologies have turned the SRAM unit into a power-hungry block for both dynamic and static viewpoints. Although the scaling of the supply voltage enables low-power consumption, the SRAM cells\u27 data stability becomes a major concern. Thus, the reduction of SRAM leakage power has become a critical research concern. To address the leakage power consumption in high-performance cache memories, a stream of novel integrated circuit and architectural level techniques are proposed by researchers including leakage-current management techniques, cell array leakage reduction techniques, bitline leakage reduction techniques, and leakage current compensation techniques. The main goal of this work was to improve the cell array leakage reduction techniques in order to minimize the leakage power for SRAM memory design in low-power applications. This study performs the body biasing application to reduce leakage current as well. To adjust the NMOSs\u27 threshold voltage and consequently leakage current, a negative DC voltage could be applied to their body terminal as a second gate. As a result, in order to generate a negative DC voltage, this study proposes a negative voltage reference that includes a trimming circuit and a negative level shifter. These enhancements are employed to a 10kb SRAM memory operating at 0.3V in a 65nm CMOS process

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Energy: A continuing bibliography with indexes, issue 38

    Get PDF
    This bibliography lists 1367 reports, articles and other documents introduced into the NASA scientific and technical information system from April 1, 1983 through June 30, 1983
    corecore