16,897 research outputs found

    High-speed Tracking with Multi-kernel Correlation Filters

    Full text link
    Correlation filter (CF) based trackers are currently ranked top in terms of their performances. Nevertheless, only some of them, such as KCF~\cite{henriques15} and MKCF~\cite{tangm15}, are able to exploit the powerful discriminability of non-linear kernels. Although MKCF achieves more powerful discriminability than KCF through introducing multi-kernel learning (MKL) into KCF, its improvement over KCF is quite limited and its computational burden increases significantly in comparison with KCF. In this paper, we will introduce the MKL into KCF in a different way than MKCF. We reformulate the MKL version of CF objective function with its upper bound, alleviating the negative mutual interference of different kernels significantly. Our novel MKCF tracker, MKCFup, outperforms KCF and MKCF with large margins and can still work at very high fps. Extensive experiments on public datasets show that our method is superior to state-of-the-art algorithms for target objects of small move at very high speed.Comment: 10+3 pages, 12 figures, 1 table, accepted by CVPR2018. This version corrects some typos, and supplements a proo

    Kernel Cross-Correlator

    Full text link
    Cross-correlator plays a significant role in many visual perception tasks, such as object detection and tracking. Beyond the linear cross-correlator, this paper proposes a kernel cross-correlator (KCC) that breaks traditional limitations. First, by introducing the kernel trick, the KCC extends the linear cross-correlation to non-linear space, which is more robust to signal noises and distortions. Second, the connection to the existing works shows that KCC provides a unified solution for correlation filters. Third, KCC is applicable to any kernel function and is not limited to circulant structure on training data, thus it is able to predict affine transformations with customized properties. Last, by leveraging the fast Fourier transform (FFT), KCC eliminates direct calculation of kernel vectors, thus achieves better performance yet still with a reasonable computational cost. Comprehensive experiments on visual tracking and human activity recognition using wearable devices demonstrate its robustness, flexibility, and efficiency. The source codes of both experiments are released at https://github.com/wang-chen/KCCComment: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18

    EnKCF: Ensemble of Kernelized Correlation Filters for High-Speed Object Tracking

    Full text link
    Computer vision technologies are very attractive for practical applications running on embedded systems. For such an application, it is desirable for the deployed algorithms to run in high-speed and require no offline training. To develop a single-target tracking algorithm with these properties, we propose an ensemble of the kernelized correlation filters (KCF), we call it EnKCF. A committee of KCFs is specifically designed to address the variations in scale and translation of moving objects. To guarantee a high-speed run-time performance, we deploy each of KCFs in turn, instead of applying multiple KCFs to each frame. To minimize any potential drifts between individual KCFs transition, we developed a particle filter. Experimental results showed that the performance of ours is, on average, 70.10% for precision at 20 pixels, 53.00% for success rate for the OTB100 data, and 54.50% and 40.2% for the UAV123 data. Experimental results showed that our method is better than other high-speed trackers over 5% on precision on 20 pixels and 10-20% on AUC on average. Moreover, our implementation ran at 340 fps for the OTB100 and at 416 fps for the UAV123 dataset that is faster than DCF (292 fps) for the OTB100 and KCF (292 fps) for the UAV123. To increase flexibility of the proposed EnKCF running on various platforms, we also explored different levels of deep convolutional features

    Kernalised Multi-resolution Convnet for Visual Tracking

    Full text link
    Visual tracking is intrinsically a temporal problem. Discriminative Correlation Filters (DCF) have demonstrated excellent performance for high-speed generic visual object tracking. Built upon their seminal work, there has been a plethora of recent improvements relying on convolutional neural network (CNN) pretrained on ImageNet as a feature extractor for visual tracking. However, most of their works relying on ad hoc analysis to design the weights for different layers either using boosting or hedging techniques as an ensemble tracker. In this paper, we go beyond the conventional DCF framework and propose a Kernalised Multi-resolution Convnet (KMC) formulation that utilises hierarchical response maps to directly output the target movement. When directly deployed the learnt network to predict the unseen challenging UAV tracking dataset without any weight adjustment, the proposed model consistently achieves excellent tracking performance. Moreover, the transfered multi-reslution CNN renders it possible to be integrated into the RNN temporal learning framework, therefore opening the door on the end-to-end temporal deep learning (TDL) for visual tracking.Comment: CVPRW 201

    Robust Visual Tracking using Multi-Frame Multi-Feature Joint Modeling

    Full text link
    It remains a huge challenge to design effective and efficient trackers under complex scenarios, including occlusions, illumination changes and pose variations. To cope with this problem, a promising solution is to integrate the temporal consistency across consecutive frames and multiple feature cues in a unified model. Motivated by this idea, we propose a novel correlation filter-based tracker in this work, in which the temporal relatedness is reconciled under a multi-task learning framework and the multiple feature cues are modeled using a multi-view learning approach. We demonstrate the resulting regression model can be efficiently learned by exploiting the structure of blockwise diagonal matrix. A fast blockwise diagonal matrix inversion algorithm is developed thereafter for efficient online tracking. Meanwhile, we incorporate an adaptive scale estimation mechanism to strengthen the stability of scale variation tracking. We implement our tracker using two types of features and test it on two benchmark datasets. Experimental results demonstrate the superiority of our proposed approach when compared with other state-of-the-art trackers. project homepage http://bmal.hust.edu.cn/project/KMF2JMTtracking.htmlComment: This paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology. The MATLAB code of our method is available from our project homepage http://bmal.hust.edu.cn/project/KMF2JMTtracking.htm

    An Experimental Survey on Correlation Filter-based Tracking

    Full text link
    Over these years, Correlation Filter-based Trackers (CFTs) have aroused increasing interests in the field of visual object tracking, and have achieved extremely compelling results in different competitions and benchmarks. In this paper, our goal is to review the developments of CFTs with extensive experimental results. 11 trackers are surveyed in our work, based on which a general framework is summarized. Furthermore, we investigate different training schemes for correlation filters, and also discuss various effective improvements that have been made recently. Comprehensive experiments have been conducted to evaluate the effectiveness and efficiency of the surveyed CFTs, and comparisons have been made with other competing trackers. The experimental results have shown that state-of-art performance, in terms of robustness, speed and accuracy, can be achieved by several recent CFTs, such as MUSTer and SAMF. We find that further improvements for correlation filter-based tracking can be made on estimating scales, applying part-based tracking strategy and cooperating with long-term tracking methods.Comment: 13 pages, 25 figure

    High-Speed Tracking with Kernelized Correlation Filters

    Full text link
    The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies -- any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the Discrete Fourier Transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new Kernelized Correlation Filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call Dual Correlation Filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source

    Tracking in Aerial Hyperspectral Videos using Deep Kernelized Correlation Filters

    Full text link
    Hyperspectral imaging holds enormous potential to improve the state-of-the-art in aerial vehicle tracking with low spatial and temporal resolutions. Recently, adaptive multi-modal hyperspectral sensors have attracted growing interest due to their ability to record extended data quickly from aerial platforms. In this study, we apply popular concepts from traditional object tracking, namely (1) Kernelized Correlation Filters (KCF) and (2) Deep Convolutional Neural Network (CNN) features to aerial tracking in hyperspectral domain. We propose the Deep Hyperspectral Kernelized Correlation Filter based tracker (DeepHKCF) to efficiently track aerial vehicles using an adaptive multi-modal hyperspectral sensor. We address low temporal resolution by designing a single KCF-in-multiple Regions-of-Interest (ROIs) approach to cover a reasonably large area. To increase the speed of deep convolutional features extraction from multiple ROIs, we design an effective ROI mapping strategy. The proposed tracker also provides flexibility to couple with the more advanced correlation filter trackers. The DeepHKCF tracker performs exceptionally well with deep features set up in a synthetic hyperspectral video generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software. Additionally, we generate a large, synthetic, single-channel dataset using DIRSIG to perform vehicle classification in the Wide Area Motion Imagery (WAMI) platform. This way, the high-fidelity of the DIRSIG software is proved and a large scale aerial vehicle classification dataset is released to support studies on vehicle detection and tracking in the WAMI platform

    Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking

    Full text link
    Being intensively studied, visual tracking has seen great recent advances in either speed (e.g., with correlation filters) or accuracy (e.g., with deep features). Real-time and high accuracy tracking algorithms, however, remain scarce. In this paper we study the problem from a new perspective and present a novel parallel tracking and verifying (PTAV) framework, by taking advantage of the ubiquity of multi-thread techniques and borrowing from the success of parallel tracking and mapping in visual SLAM. Our PTAV framework typically consists of two components, a tracker T and a verifier V, working in parallel on two separate threads. The tracker T aims to provide a super real-time tracking inference and is expected to perform well most of the time; by contrast, the verifier V checks the tracking results and corrects T when needed. The key innovation is that, V does not work on every frame but only upon the requests from T; on the other end, T may adjust the tracking according to the feedback from V. With such collaboration, PTAV enjoys both the high efficiency provided by T and the strong discriminative power by V. In our extensive experiments on popular benchmarks including OTB2013, OTB2015, TC128 and UAV20L, PTAV achieves the best tracking accuracy among all real-time trackers, and in fact performs even better than many deep learning based solutions. Moreover, as a general framework, PTAV is very flexible and has great rooms for improvement and generalization.Comment: 9 page

    Part-based Visual Tracking via Structural Support Correlation Filter

    Full text link
    Recently, part-based and support vector machines (SVM) based trackers have shown favorable performance. Nonetheless, the time-consuming online training and updating process limit their real-time applications. In order to better deal with the partial occlusion issue and improve their efficiency, we propose a novel part-based structural support correlation filter tracking method, which absorbs the strong discriminative ability from SVM and the excellent property of part-based tracking methods which is less sensitive to partial occlusion. Then, our proposed model can learn the support correlation filter of each part jointly by a star structure model, which preserves the spatial layout structure among parts and tolerates outliers of parts. In addition, to mitigate the issue of drift away from object further, we introduce inter-frame consistencies of local parts into our model. Finally, in our model, we accurately estimate the scale changes of object by the relative distance change among reliable parts. The extensive empirical evaluations on three benchmark datasets: OTB2015, TempleColor128 and VOT2015 demonstrate that the proposed method performs superiorly against several state-of-the-art trackers in terms of tracking accuracy, speed and robustness
    • …
    corecore