10 research outputs found

    On the Learnability of Software Router Performance via CPU Measurements

    Get PDF
    In the last decade the ICT community observed a growing popularity of software networking paradigms. This trend consists in moving network applications from static, expensive, hardware equipment (e.g. router, switches, firewalls) towards flexible, cheap pieces of software that are executed on a commodity server. In this context, a server owner may provide the server resources (CPUs, NICs, RAM) for customers, following a Service-Level Agreement (SLA) about clients' requirements. The problem of resource allocation is typically solved by overprovisioning, as the clients' application is opaque to the server owner, and the resource required by clients' applications are often unclear or very difficult to quantify. This paper shows a novel approach that exploits machine learning techniques in order to infer the input traffic load (i.e., the expected network traffic condition) by solely looking at the runtime CPU footprint

    On the Use of Kernel Bypass Mechanisms for High-Performance Inter-container Communications

    Get PDF
    In this paper, we perform a comparison among a number of different virtual bridging and switching technologies, each widely available and commonly used on Linux, to provide network connectivity to co-located LXC containers for high-performance application scenarios

    A Framework for Comparative Evaluation of High-Performance Virtualized Networking Mechanisms

    Get PDF
    This paper presents an extension to a software framework designed to evaluate the efficiency of different software and hardware-accelerated virtual switches, each commonly adopted on Linux to provide virtual network connectivity to containers in high-performance scenarios, like in Network Function Virtualization (NFV). We present results from the use of our tools, showing the performance of multiple high-performance networking frameworks on a specific platform, comparing the collected data for various key metrics, namely throughput, latency and scalability, with respect to the required computational power

    Performance Benchmarking of State-of-the-Art Software Switches for NFV

    Full text link
    With the ultimate goal of replacing proprietary hardware appliances with Virtual Network Functions (VNFs) implemented in software, Network Function Virtualization (NFV) has been gaining popularity in the past few years. Software switches route traffic between VNFs and physical Network Interface Cards (NICs). It is of paramount importance to compare the performance of different switch designs and architectures. In this paper, we propose a methodology to compare fairly and comprehensively the performance of software switches. We first explore the design spaces of seven state-of-the-art software switches and then compare their performance under four representative test scenarios. Each scenario corresponds to a specific case of routing NFV traffic between NICs and/or VNFs. In our experiments, we evaluate the throughput and latency between VNFs in two of the most popular virtualization environments, namely virtual machines (VMs) and containers. Our experimental results show that no single software switch prevails in all scenarios. It is, therefore, crucial to choose the most suitable solution for the given use case. At the same time, the presented results and analysis provide a deeper insight into the design tradeoffs and identifies potential performance bottlenecks that could inspire new designs.Comment: 17 page

    High-Speed Software Data Plane via Vectorized Packet Processing

    No full text
    International audienc

    High-Speed Software Data Plane via Vectorized Packet Processing

    No full text

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives
    corecore