22 research outputs found

    A Time-Frequency Generative Adversarial based method for Audio Packet Loss Concealment

    Full text link
    Packet loss is a major cause of voice quality degradation in VoIP transmissions with serious impact on intelligibility and user experience. This paper describes a system based on a generative adversarial approach, which aims to repair the lost fragments during the transmission of audio streams. Inspired by the powerful image-to-image translation capability of Generative Adversarial Networks (GANs), we propose bin2bin, an improved pix2pix framework to achieve the translation task from magnitude spectrograms of audio frames with lost packets, to noncorrupted speech spectrograms. In order to better maintain the structural information after spectrogram translation, this paper introduces the combination of two STFT-based loss functions, mixed with the traditional GAN objective. Furthermore, we employ a modified PatchGAN structure as discriminator and we lower the concealment time by a proper initialization of the phase reconstruction algorithm. Experimental results show that the proposed method has obvious advantages when compared with the current state-of-the-art methods, as it can better handle both high packet loss rates and large gaps.Comment: Accepted at EUSIPCO - 31st European Signal Processing Conference, 202

    Cascaded Cross-Module Residual Learning towards Lightweight End-to-End Speech Coding

    Full text link
    Speech codecs learn compact representations of speech signals to facilitate data transmission. Many recent deep neural network (DNN) based end-to-end speech codecs achieve low bitrates and high perceptual quality at the cost of model complexity. We propose a cross-module residual learning (CMRL) pipeline as a module carrier with each module reconstructing the residual from its preceding modules. CMRL differs from other DNN-based speech codecs, in that rather than modeling speech compression problem in a single large neural network, it optimizes a series of less-complicated modules in a two-phase training scheme. The proposed method shows better objective performance than AMR-WB and the state-of-the-art DNN-based speech codec with a similar network architecture. As an end-to-end model, it takes raw PCM signals as an input, but is also compatible with linear predictive coding (LPC), showing better subjective quality at high bitrates than AMR-WB and OPUS. The gain is achieved by using only 0.9 million trainable parameters, a significantly less complex architecture than the other DNN-based codecs in the literature.Comment: Accepted for publication in INTERSPEECH 201
    corecore