14,518 research outputs found

    Word Recognition with Deep Conditional Random Fields

    Full text link
    Recognition of handwritten words continues to be an important problem in document analysis and recognition. Existing approaches extract hand-engineered features from word images--which can perform poorly with new data sets. Recently, deep learning has attracted great attention because of the ability to learn features from raw data. Moreover they have yielded state-of-the-art results in classification tasks including character recognition and scene recognition. On the other hand, word recognition is a sequential problem where we need to model the correlation between characters. In this paper, we propose using deep Conditional Random Fields (deep CRFs) for word recognition. Basically, we combine CRFs with deep learning, in which deep features are learned and sequences are labeled in a unified framework. We pre-train the deep structure with stacked restricted Boltzmann machines (RBMs) for feature learning and optimize the entire network with an online learning algorithm. The proposed model was evaluated on two datasets, and seen to perform significantly better than competitive baseline models. The source code is available at https://github.com/ganggit/deepCRFs.Comment: 5 pages, published in ICIP 2016. arXiv admin note: substantial text overlap with arXiv:1412.339

    Efficient Multi-Template Learning for Structured Prediction

    Full text link
    Conditional random field (CRF) and Structural Support Vector Machine (Structural SVM) are two state-of-the-art methods for structured prediction which captures the interdependencies among output variables. The success of these methods is attributed to the fact that their discriminative models are able to account for overlapping features on the whole input observations. These features are usually generated by applying a given set of templates on labeled data, but improper templates may lead to degraded performance. To alleviate this issue, in this paper, we propose a novel multiple template learning paradigm to learn structured prediction and the importance of each template simultaneously, so that hundreds of arbitrary templates could be added into the learning model without caution. This paradigm can be formulated as a special multiple kernel learning problem with exponential number of constraints. Then we introduce an efficient cutting plane algorithm to solve this problem in the primal, and its convergence is presented. We also evaluate the proposed learning paradigm on two widely-studied structured prediction tasks, \emph{i.e.} sequence labeling and dependency parsing. Extensive experimental results show that the proposed method outperforms CRFs and Structural SVMs due to exploiting the importance of each template. Our complexity analysis and empirical results also show that our proposed method is more efficient than OnlineMKL on very sparse and high-dimensional data. We further extend this paradigm for structured prediction using generalized pp-block norm regularization with p>1p>1, and experiments show competitive performances when p∈[1,2)p \in [1,2)

    Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

    Full text link
    We apply stochastic average gradient (SAG) algorithms for training conditional random fields (CRFs). We describe a practical implementation that uses structure in the CRF gradient to reduce the memory requirement of this linearly-convergent stochastic gradient method, propose a non-uniform sampling scheme that substantially improves practical performance, and analyze the rate of convergence of the SAGA variant under non-uniform sampling. Our experimental results reveal that our method often significantly outperforms existing methods in terms of the training objective, and performs as well or better than optimally-tuned stochastic gradient methods in terms of test error.Comment: AI/Stats 2015, 24 page
    • …
    corecore