2 research outputs found

    High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications

    No full text
    An efficient scheme is proposed in this study to prepare four symmetric hyperentangled cluster states in the polarization degrees of freedom (DOF) and spatial DOF with a two-photon system. This system consists of two nitrogen-vacancy (NV) centers which are coupled to two microtoroidal resonators. The two-photon polarization-spatial hyperentangled cluster states can be generated with our system by virtue of the input and output process. Compared with previous works, our quantum circuit for preparing the hyperentangled cluster states is simple and economic. Moreover, our scheme works deterministically and does not need any extra qubits, making it applicable to existing technologies. Our calculations show that our scheme has high fidelity with current technology, which can help hyperentangled cluster states to play a very useful role in quantum communication networks with long distances and high capacity
    corecore