2,623 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    2 GHz +14 dBm CMOS power amplifier for Low Power Wide Area Networks

    Get PDF
    Abstract. The design of a radiofrequency power amplifier (RF PA) for narrowband low-power wide area networks is presented in this thesis. Particularly, this RF PA is compliant with the 3GPP TS 36.101 standard for a NB1 device within the Power Class 6. To minimize silicon area consumption, this CMOS RF PA employs a single-ended single-stage topology, avoiding inter-stage matching network inductors and output baluns. This RF PA produces +14 dBm of output power with a PAE of 25% and an EVM better than 4% (−28 dB). Also, its out-of-band and spurious emissions satisfy the standard specifications with a large margin. Furthermore, it provides high ruggedness, tolerating an antenna mismatch with a VSWR of 8:1

    Analysis and design of ΣΔ Modulators for Radio Frequency Switchmode Power Amplifiers

    Get PDF
    Power amplifiers are an integral part of every basestation, macrocell, microcell and mobile phone, enabling data to be sent over the distances needed to reach the receiver’s antenna. While linear operation is needed for transmitting WCDMA and OFDM signals, linear operation of a power amplifier is characterized by low power efficiency, and contributes to unwanted power dissipation in a transmitter. Recently, a switchmode power amplifier operation was considered for reducing power losses in a RF transmitter. A linear and efficient operation of a PA can be achieved when the transmitted RF signal is ΣΔ modu- lated, and subsequently amplified by a nonlinear device. Although in theory this approach offers linearity and efficiency reaching 100%, the use of ΣΔ modulation for transmitting wideband signals causes problems in practical implementation: it requires high sampling rate by the digital hardware, which is needed for shaping large contents of a quantization noise induced by the modulator but also, the binary output from the modulator needs an RF power amplifier operating over very wide frequency band. This thesis addresses the problem of noise shaping in a ΣΔ modulator and nonlinear distortion caused by broadband operation in switchmode power amplifier driven by a ΣΔ modulated waveform. The problem of sampling rate increase in a ΣΔ modulator is solved by optimizing structure of the modulator, and subsequent processing of an input signal’s samples in parallel. Independent from the above, a novel technique for reducing quan- tization noise in a bandpass ΣΔ modulator using single bit quantizer is presented. The technique combines error pulse shaping and 3-level quantization for improving signal to noise ratio in a 2-level output. The improvement is achieved without the increase of a digital hardware’s sampling rate, which is advantageous also from the perspective of power consumption. The new method is explored in the course of analysis, and verified by simulated and experimental results. The process of RF signal conversion from the Cartesian to polar form is analyzed, and a signal modulator for a polar transmitter with a ΣΔ-digitized envelope signal is designed and implemented. The new modulator takes an advantage of bandpass digital to analog conversion for simplifying the analog part of the modulator. A deformation of the pulsed RF signal in the experimental modulator is demonstrated to have an effect primarily on amplitude of the RF signal, which is correctable with simple predistortion

    A survey on RF and microwave doherty power amplifier for mobile handset applications

    Get PDF
    This survey addresses the cutting-edge load modulation microwave and radio frequency power amplifiers for next-generation wireless communication standards. The basic operational principle of the Doherty amplifier and its defective behavior that has been originated by transistor characteristics will be presented. Moreover, advance design architectures for enhancing the Doherty power amplifier’s performance in terms of higher efficiency and wider bandwidth characteristics, as well as the compact design techniques of Doherty amplifier that meets the requirements of legacy 5G handset applications, will be discussed.Agencia Estatal de InvestigaciĂłn | Ref. TEC2017-88242-C3-2-RFundação para a CiĂȘncia e a Tecnologia | Ref. UIDP/50008/201

    Study of state-of-the-art static inverter design Final report, 6 Jan. - 6 Jun. 1966

    Get PDF
    Multiple purpose inverter design based on phase demodulated inverter circuit selected from state-of-the-art assessment of ten inverter circuit

    CMOS Power Amplifiers for Wireless Communication Systems

    Get PDF

    Analysis and Design of a Sub-THz Ultra-Wideband Phased-Array Transmitter

    Get PDF
    This thesis investigates circuits and systems for broadband high datarate transmitter systems in the millimeter-wave (mm-wave) spectrum. During the course of this dissertation, the design process and characterization of a power efficient and wideband binary phase-shift keying (BPSK) transmitter integrated circuit (IC) with local oscillator (LO) frequency multiplication and 360° phase control for beam steering is studied. All required circuit blocks are designed based on the theoretical analysis of the underlying principles, optimized, fabricated and characterized in the research laboratory targeting low power consumption, high efficiency and broadband operation. The phase-controlled push-push (PCPP) architecture enabling frequency multiplication by four in a single stage is analytically studied and characterized finding an optimum between output power and second harmonic suppression depending on the input amplitude. A PCPP based LO chain is designed. A circuit is fabricated establishing the feasibility of this architecture for operation at more than 200 GHz. Building on this, a second circuit is designed, which produces among the highest saturated output powers at 2 dBm. At less than 100 mW of direct current (DC) power consumption, this results in a power-added efficiency (PAE) of 1.6 % improving the state of the art by almost 30 %. Phase-delayed and time-delayed approaches to beam steering are analyzed, identifying and discussing design challenges like area consumption, signal attenuation and beam squint. A 60 GHz active vector-sum phase-shifter with high gain of 11.3 dB and output power of 5 dBm, improving the PAE of the state of the art by a factor of 30 achieving 6.29 %, is designed. The high gain is possible due to an optimization of the orthogonal signal creation stage enabled by studying and comparing different architectures leading to a trade off of lower signal attenuation for higher area consumption in the chosen electromagnetic coupler. By combining this with a frequency quadrupler, a phase steering enabled LO chain for operation at 220 GHz is created and characterized, confirming the preceding analysis of the phase-frequency relation during multiplication. It achieves a power gain of 21 dB, outperforming comparable designs by 25 dB. This allows the combination of phase control, frequency multiplication and pre-amplification. The radio frequency (RF) efficiency is increased 40-fold to 0.99 %, with a total power consumption of 105 mW. Motivated by the distorting effect of beam squint in phase-delayed broadband array systems, a novel analog hybrid beam steering architecture is devised, combining phase-delayed and time-delayed steering with the goal of reducing the beam squint of phase-delayed systems and large area consumption of time-delayed circuits. An analytical design procedure is presented leading to the research finding of a beam squint reduction potential of more than 83 % in an ideal system. Here, the increase in area consumption is outweighed by the reduction in beam squint. An IC with a low power consumption of 4.3 mW has been fabricated and characterized featuring the first time delay circuit operating at above 200 GHz. By producing most of the beam direction by means of time delay the beam squinting can be reduced by more than 75 % in measurements while the subsequent phase shifter ensures continuous beam direction control. Together, the required silicon area can be reduced to 43 % compared to timedelayed systems in the same frequency range. Based on studies of the optimum signal feeding and input matching of a Gilbert cell, an ultra-wideband, low-power mixer was designed. A bandwidth of more than 100 GHz was achieved exceeding the state of the art by 23 %. With a conversion gain of –13 dB, this enables datarates of more than 100 Gbps in BPSK operation. The findings are consolidated in an integrated transmitter operating around 246 GHz doubling the highest published measured datarates of transmitters with LO chain and power amplifier in BPSK operation to 56 Gbps. The resulting transmitter efficiency of 7.4 pJ/bit improves the state of the art by 70 % and 50 % over BPSK and quadrature phaseshift keying (QPSK) systems, respectively. Together, the results of this work form the basis for low-power and efficient next-generation wireless applications operating at many times the datarates available today.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241Diese Dissertation untersucht Schaltungen und Systeme fĂŒr breitbandige Transmittersysteme mit hoher Datenrate im Millimeterwellen (mm-wave) Spektrum. Im Rahmen dieser Arbeit werden der Entwurfsprozess und die Charakterisierung eines leistungseffizienten und breitbandigen integrierten Senders basierend auf binĂ€rer Phasenumtastung (BPSK) mit Frequenzvervielfachung des Lokaloszillatorsignals und 360°-Phasenkontrolle zur Strahlsteuerung untersucht. Alle erforderlichen Schaltungsblöcke werden auf Grundlage von theoretischen Analysen der zugrundeliegenden Prinzipien entworfen, optimiert, hergestellt und im Forschungslabor charakterisiert, mit den Zielen einer niedrigen Leistungsaufnahme, eines hohen Wirkungsgrades und einer möglichst großen Bandbreite. Die phasengesteuerte Push-Push (PCPP)-Architektur, welche eine Frequenzvervierfachung in einer einzigen Stufe ermöglicht, wird analytisch untersucht und charakterisiert. Dabei wird ein Optimum zwischen Ausgangsleistung und UnterdrĂŒckung der zweiten Harmonischen des Eingangssignals in AbhĂ€ngigkeit von der Eingangsamplitude gefunden. Es wird eine LO-Kette auf PCPP-Basis entworfen. Eine Schaltung wird prĂ€sentiert, die die Machbarkeit dieser Architektur fĂŒr den Betrieb bei mehr als 200 GHz nachweist. Darauf aufbauend wird eine zweite Schaltung entworfen, die mit 2 dBm eine der höchsten publizierten gesĂ€ttigten Ausgangsleistungen erzeugt. Mit einer Leistungsaufnahme von weniger als 100mW ergibt sich ein Leistungswirkungsgrad (PAE) von 1.6 %, was den Stand der Technik um fast 30 % verbessert. Es werden phasenverzögerte und zeitverzögerte AnsĂ€tze zur Steuerung der Strahlrichtung analysiert, wobei Entwicklungsherausforderungen wie FlĂ€chenverbrauch, SignaldĂ€mpfung und Strahlschielen identifiziert und diskutiert werden. Ein aktiver Vektorsummen-Phasenschieber mit hoher VerstĂ€rkung von 11.3 dB und einer Ausgangsleistung von 5 dBm, der mit einer PAE von 6.29 % den Stand der Technik um den Faktor 30 verbessert, wird entworfen. Die hohe VerstĂ€rkung ist zum Teil auf eine Optimierung der orthogonalen Signalerzeugungsstufe zurĂŒckzufĂŒhren, die durch die Untersuchung und den Vergleich verschiedener Architekturen ermöglicht wird. Bei der Entscheidung fĂŒr einen elektromagnetischen Koppler rechtfertigt die geringere SignaldĂ€mpfung einen höheren FlĂ€chenverbrauch. Durch die Kombination mit einem Frequenzvervierfacher wird eine LO-Kette mit Phasensteuerung fĂŒr den Betrieb bei 220 GHz geschaffen und charakterisiert, was die vorangegangene Analyse der Phasen-FrequenzBeziehung wĂ€hrend der Multiplikation bestĂ€tigt. Sie erreicht einen Leistungsgewinn von 21 dB und ĂŒbertrifft damit vergleichbare Designs um 25dB. Dies ermöglicht die Kombination von Phasensteuerung, Frequenzvervielfachung und VorverstĂ€rkung. Der HochfrequenzWirkungsgrad wird um das 40-fache auf 0.99 % bei einer Gesamtleistungsaufnahme von 105 mW gesteigert. Motiviert durch den verzerrenden Effekt des Strahlenschielens in phasengesteuerten Breitbandarraysystemen, wird eine neuartige analoge hybride Strahlsteuerungsarchitektur untersucht, die phasenverzögerte und zeitverzögerte Steuerung kombiniert. Damit wird sowohl das Strahlenschielen phasenverzögerter Systeme als auch der große FlĂ€chenverbrauch zeitverzögerter Schaltungen reduziert. Es wird ein analytisches Entwurfsverfahren vorgestellt, das zu dem Forschungsergebnis fĂŒhrt, dass in einem idealen System ein Potenzial zur Reduktion des Strahlenschielens von mehr als 83 % besteht. Dabei wird die Zunahme des FlĂ€chenverbrauchs durch die Verringerung des Strahlenschielens aufgewogen. Es wird ein IC mit einer geringen Leistungsaufnahme von 4.3mW hergestellt und charakterisiert. Dabei wird die erste Zeitverzögerungsschaltung entworfen, die bei ĂŒber 200 GHz arbeitet. Durch die Erzeugung eines Großteils der Strahlrichtung mittels Zeitverzögerung kann das Schielen des Strahls bei Messungen um mehr als 75% reduziert werden, wĂ€hrend der nachfolgende Phasenschieber eine kontinuierliche Steuerung der Strahlrichtung gewĂ€hrleistet. Insgesamt kann die benötigte SiliziumflĂ€che im Vergleich zu zeitverzögerten Systemen im gleichen Frequenzbereich auf 43 % reduziert werden. Auf der Grundlage von Studien zur optimalen Signaleinspeisung und Eingangsanpassung einer Gilbert-Zelle wird ein Ultrabreitband-Mischer mit geringem Stromverbrauch entworfen. Dieser erreicht eine Ausgangsbandbreite von mehr als 100 GHz, die den Stand der Technik um 23% ĂŒbertrifft. Bei einer WandlungsverstĂ€rkung von –13dB ermöglicht dies Datenraten von mehr als 100 Gbps im BPSK-Betrieb. Die Erkenntnisse werden in einem integrierten, breitbandigen Sender konsolidiert, der um 246 GHz arbeitet und die höchsten veröffentlichten gemessenen Datenraten fĂŒr Sender mit LO-Signalkette und LeistungsverstĂ€rker im BPSK-Betrieb auf 56 Gbps verdoppelt. Die daraus resultierende Transmitter-Effizienz von 7.4 pJ/bit verbessert den Stand der Technik um 70 % bzw. 50 % gegenĂŒber BPSKund Quadratur Phasenumtastung (QPSK)-Systemen. Zusammen bilden die Ergebnisse dieser Arbeit die Grundlage fĂŒr stromsparende, effiziente, mobile Funkanwendungen der nĂ€chsten Generation mit einem Vielfachen der heute verfĂŒgbaren Datenraten.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 24

    Lossless Multiway Power Combining and Outphasing for High-Frequency Resonant Inverters

    Get PDF
    A lossless multi-way power combining and outphasing system have recently been proposed for high-frequency inverters and power amplifiers that offers major performance advantages over traditional approaches. This paper presents outphasing control strategies for the proposed power combining system that enable output power control through effective load modulation of the inverters. It describes a straightforward power combiner design methodology and enumerates various possible topological combiner implementations. Moreover, this study presents the first-ever experimental demonstration of the proposed outphasing system. The design of a 27.12 MHz, four-way power combining and outphasing system is described and used to experimentally verify the power combiner's characteristics. The proposed outphasing law is shown to be effective in controlling the output power over a 10-100 W (10:1) power range
    • 

    corecore