131,022 research outputs found

    Selective machine learning of doubly robust functionals

    Full text link
    While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce two new selection criteria for bias reduction in estimating the functional of interest, each based on a novel definition of pseudo-risk for the functional that embodies the double robustness property and thus is used to select the pair of learners that is nearest to fulfilling this property. We establish an oracle property for a multi-fold cross-validation version of the new selection criteria which states that our empirical criteria perform nearly as well as an oracle with a priori knowledge of the pseudo-risk for each pair of candidate learners. We also describe a smooth approximation to the selection criteria which allows for valid post-selection inference. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study

    Sublinear expectation linear regression

    Full text link
    Nonlinear expectation, including sublinear expectation as its special case, is a new and original framework of probability theory and has potential applications in some scientific fields, especially in finance risk measure and management. Under the nonlinear expectation framework, however, the related statistical models and statistical inferences have not yet been well established. The goal of this paper is to construct the sublinear expectation regression and investigate its statistical inference. First, a sublinear expectation linear regression is defined and its identifiability is given. Then, based on the representation theorem of sublinear expectation and the newly defined model, several parameter estimations and model predictions are suggested, the asymptotic normality of estimations and the mini-max property of predictions are obtained. Furthermore, new methods are developed to realize variable selection for high-dimensional model. Finally, simulation studies and a real-life example are carried out to illustrate the new models and methodologies. All notions and methodologies developed are essentially different from classical ones and can be thought of as a foundation for general nonlinear expectation statistics

    Robust filtering for bilinear uncertain stochastic discrete-time systems

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with the robust filtering problem for uncertain bilinear stochastic discrete-time systems with estimation error variance constraints. The uncertainties are allowed to be norm-bounded and enter into both the state and measurement matrices. We focus on the design of linear filters, such that for all admissible parameter uncertainties, the error state of the bilinear stochastic system is mean square bounded, and the steady-state variance of the estimation error of each state is not more than the individual prespecified value. It is shown that the design of the robust filters can be carried out by solving some algebraic quadratic matrix inequalities. In particular, we establish both the existence conditions and the explicit expression of desired robust filters. A numerical example is included to show the applicability of the present method
    corecore