43,817 research outputs found

    The fused Kolmogorov filter: A nonparametric model-free screening method

    Full text link
    A new model-free screening method called the fused Kolmogorov filter is proposed for high-dimensional data analysis. This new method is fully nonparametric and can work with many types of covariates and response variables, including continuous, discrete and categorical variables. We apply the fused Kolmogorov filter to deal with variable screening problems emerging from a wide range of applications, such as multiclass classification, nonparametric regression and Poisson regression, among others. It is shown that the fused Kolmogorov filter enjoys the sure screening property under weak regularity conditions that are much milder than those required for many existing nonparametric screening methods. In particular, the fused Kolmogorov filter can still be powerful when covariates are strongly dependent on each other. We further demonstrate the superior performance of the fused Kolmogorov filter over existing screening methods by simulations and real data examples.Comment: Published at http://dx.doi.org/10.1214/14-AOS1303 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Feature Augmentation via Nonparametrics and Selection (FANS) in High Dimensional Classification

    Full text link
    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.Comment: 30 pages, 2 figure

    Large-Scale Kernel Methods for Independence Testing

    Get PDF
    Representations of probability measures in reproducing kernel Hilbert spaces provide a flexible framework for fully nonparametric hypothesis tests of independence, which can capture any type of departure from independence, including nonlinear associations and multivariate interactions. However, these approaches come with an at least quadratic computational cost in the number of observations, which can be prohibitive in many applications. Arguably, it is exactly in such large-scale datasets that capturing any type of dependence is of interest, so striking a favourable tradeoff between computational efficiency and test performance for kernel independence tests would have a direct impact on their applicability in practice. In this contribution, we provide an extensive study of the use of large-scale kernel approximations in the context of independence testing, contrasting block-based, Nystrom and random Fourier feature approaches. Through a variety of synthetic data experiments, it is demonstrated that our novel large scale methods give comparable performance with existing methods whilst using significantly less computation time and memory.Comment: 29 pages, 6 figure

    Nonparametric estimation of extremal dependence

    Get PDF
    There is an increasing interest to understand the dependence structure of a random vector not only in the center of its distribution but also in the tails. Extreme-value theory tackles the problem of modelling the joint tail of a multivariate distribution by modelling the marginal distributions and the dependence structure separately. For estimating dependence at high levels, the stable tail dependence function and the spectral measure are particularly convenient. These objects also lie at the basis of nonparametric techniques for modelling the dependence among extremes in the max-domain of attraction setting. In case of asymptotic independence, this setting is inadequate, and more refined tail dependence coefficients exist, serving, among others, to discriminate between asymptotic dependence and independence. Throughout, the methods are illustrated on financial data.Comment: 22 pages, 9 figure
    corecore