25 research outputs found

    Rate of convergence for a Galerkin scheme approximating a two-scale reaction-diffusion system with nonlinear transmission condition

    Get PDF
    We study a two-scale reaction-diffusion system with nonlinear reaction terms and a nonlinear transmission condition (remotely ressembling Henry's law) posed at air-liquid interfaces. We prove the rate of convergence of the two-scale Galerkin method proposed in Muntean & Neuss-Radu (2009) for approximating this system in the case when both the microstructure and macroscopic domain are two-dimensional. The main difficulty is created by the presence of a boundary nonlinear term entering the transmission condition. Besides using the particular two-scale structure of the system, the ingredients of the proof include two-scale interpolation-error estimates, an interpolation-trace inequality, and improved regularity estimates.Comment: 14 pages, table of content

    Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media

    Get PDF
    This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain DD such that D\overline{D} is the union of cells {Di}iI\{\overline{D_i}\}_{i\in I} and we introduce a two-scale representation by identifying any function v(x)v(x) defined on DD with a bi-variate function v(i,y)v(i,y), where iIi \in I relates to the index of the cell containing the point xx and yYy \in Y relates to a local coordinate in a reference cell YY. We introduce a weak formulation of the problem in a broken Sobolev space V(D)V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D)V(D) with a tensor product space RIV(Y)\mathbb{R}^I \otimes V(Y) of functions defined over the product set I×YI\times Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.Comment: Changed the choice of test spaces V(D) and X (with regard to regularity) and the argumentation thereof. Corrected proof of proposition 3. Corrected wrong multiplicative factor in proposition 4 and its proof (was 2 instead of 1). Added remark 6 at the end of section 2. Extended remark 7. Added references. Some minor improvements (typos, typesetting

    Finite element approximation of high-dimensional transport-dominated diffusion problems

    Get PDF
    High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate partial differential equations.\ud \ud (Presented as an invited lecture under the title "Computational multiscale modelling: Fokker-Planck equations and their numerical analysis" at the Foundations of Computational Mathematics conference in Santander, Spain, 30 June - 9 July, 2005.

    Homogenization of Parabolic Equations with a Continuum of Space and Time Scales

    Get PDF
    This paper addresses the issue of the homogenization of linear divergence form parabolic operators in situations where no ergodicity and no scale separation in time or space are available. Namely, we consider divergence form linear parabolic operators in ΩRn\Omega \subset \mathbb{R}^n with L(Ω×(0,T))L^\infty(\Omega \times (0,T))-coefficients. It appears that the inverse operator maps the unit ball of L2(Ω×(0,T))L^2(\Omega\times (0,T)) into a space of functions which at small (time and space) scales are close in H1H^1 norm to a functional space of dimension nn. It follows that once one has solved these equations at least nn times it is possible to homogenize them both in space and in time, reducing the number of operation counts necessary to obtain further solutions. In practice we show under a Cordes-type condition that the first order time derivatives and second order space derivatives of the solution of these operators with respect to caloric coordinates are in L2L^2 (instead of H1H^{-1} with Euclidean coordinates). If the medium is time-independent, then it is sufficient to solve nn times the associated elliptic equation in order to homogenize the parabolic equation
    corecore