270 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    A New Index for Detecting and Avoiding Type II Singularities for the Control of Non-Redundant Parallel Robots

    Full text link
    [ES] Los robots paralelos (PR por sus siglas en inglés) son mecanismos donde el efector final está unido a la base, mediante al menos dos cadenas cinemáticas abiertas. Los PRs ofrecen una gran capacidad de carga y alta precisión, lo que los hace adecuados para diversas aplicaciones, entre ellas la interacción persona-robot. Sin embargo, en las proximidades de una singularidad Tipo II (singularidad dentro del espacio de trabajo), un PR pierde el control sobre los movimientos del efector final. La pérdida de control representa un riesgo importante para los usuarios, especialmente en rehabilitación robótica. En las últimas décadas, los PR se han popularizado en la rehabilitación de miembros inferiores debido al aumento del número de personas que viven con limitaciones físicas. Así, esta tesis trata sobre la detección y evitación de singularidades de Tipo II para asegurar total control de un PR no redundante para la rehabilitación y diagnóstico de rodilla, denominado 3UPS+RPU. En la literatura, existen varios índices para detectar y medir la cercanía a una singularidad basados en métodos analíticos y geométricos. Sin embargo, algunos de estos índices carecen de significado físico y son incapaces de identificar los actuadores responsables de la pérdida de control. Esta tesis aporta dos novedosos índices para detectar y medir la proximidad a una singularidad de Tipo II, capaces de identificar el par de actuadores responsables de la singularidad. Los dos índices son los ángulos entre los componentes lineal (T_i,j) y angular (O_i,j) de dos Twist Screw de Salida (OTS por sus siglas en inglés) normalizados i,j. Una singularidad Tipo II es detectada cuando T_i,j = O_i,j = 0 y su proximidad se mide mediante los mínimos ángulos T_i,j (minT) y O_i,j (minO) para los casos plano y espacial, respectivamente. La eficacia de los índices T_i,j y O_i,j se evalúa de forma teórica y experimental en un robot 3UPS+RPU y un mecanismo de cinco barras. Además, se propone un procedimiento experimental para el adecuado establecimiento del límite de cercanía a una singularidad de Tipo II mediante la aproximación progresiva del PR a una singularidad y la medición de la última posición controlable. Posteriormente, se desarrollan dos nuevos algoritmos deterministas para liberar y evitar una singularidad de Tipo II basados en minT y minO para PR no redundantes. minT y minO se utilizan para identificar los dos actuadores a mover para liberar o evitar el PR de una singularidad. Ambos algoritmos requieren una medición precisa de la pose alcanzada por el efector final. El algoritmo para liberar un PR de una configuración singular se aplica con éxito en un controlador híbrido basado en visión artificial para el PR 3UPS+RPU. El controlador utiliza un sistema de fotogrametría para medir la pose del robot debido a la degeneración del modelo cinemático en las proximidades de una singularidad. El algoritmo de evasión de singularidades Tipo II se aplica a la planificación offline y online de trayectorias no singulares para un mecanismo de cinco barras y el PR 3UPS+RPU. Estas aplicaciones verifican el bajo coste computacional y la mínima desviación introducida en la trayectoria original por los nuevos algoritmos. La implementación directa de un controlador de fuerza/posición en el PR 3UPS+RPU es insegura porque el paciente podría llevar involuntariamente al PR a una singularidad. Por lo tanto, esta tesis concluye presentando un novedoso controlador de fuerza/posición complementado con el algoritmo de evasión de singularidades de Tipo II. El nuevo controlador se evalúa durante rehabilitación activa de una pierna de maniquí y una pierna humana no lesionada. Los resultados muestran que el nuevo controlador combinado mantiene el PR 3UPS+RPU lejos de configuraciones singulares con una desviación mínima de la trayectoria original. Por lo tanto, esta tesis habilita el 3UPS+RPU PR para la rehabilitación segura de miembros inferiores lesionados.[CAT] Els robots paral·lels (PR per les seues sigles en anglés) són mecanismes on l'efector final està unit a la base, mitjançant almenys dues cadenes cinemàtiques obertes. Els PRs ofereixen una gran capacitat de càrrega i alta precisió, la qual cosa els fa adequats per a diverses aplicacions, entre elles la interacció persona-robot. No obstant això, en les proximitats d'una singularitat Tipus II (singularitat dins de l'espai de treball), un PR perd el control sobre els moviments de l'efector final. La pèrdua de control representa un risc important per als usuaris, especialment en rehabilitació robòtica. En les últimes dècades, els PR s'han popularitzat en la rehabilitació de membres inferiors a causa de l'augment del nombre de persones que viuen amb limitacions físiques. Així, aquesta tesi tracta sobre la detecció i evació de singularitats de Tipus II per a assegurar total control d'un PR no redundant per a la rehabilitació i diagnòstic de genoll, denominat 3UPS+RPU. En la literatura, existeixen diversos índexs per a detectar i mesurar la proximitat a una singularitat basats en mètodes analítics i geomètrics. No obstant això, alguns d'aquests índexs manquen de significat físic i són incapaços d'identificar els actuadors responsables de la pèrdua de control. Aquesta tesi aporta dos nous índexs per a detectar i mesurar la proximitat a una singularitat de Tipus II, capaços d'identificar el parell d'actuadors responsables de la singularitat. Els dos índexs són els angles entre els components lineal (T_i,j) i angular (O_i,j) de dues Twist Screw d'Eixida (OTS per les seues sigles en engonals) normalitzats i,j. Una singularitat Tipus II és detectada quan T_i,j = O_i,j = 0 i la seua proximitat es mesura mitjançant els minimos angles T_i,j (minT) i O_i,j (minO) per als casos pla i espacial, respectivament. L'eficàcia dels índexs T_i,j i O_i,j es evalua de manera teòrica i experimental en un robot 3UPS+RPU i un mecanisme de cinc barres. A més, es proposa un procediment experimental per a l'adequat establiment del límit de proximitat a una singularitat de Tipus II mitjançant l'aproximació progressiva del PR a una singularitat i el mesurament de l'última posició controlable. Posteriorment, es desenvolupen dos nous algorismes deterministes per a alliberar i evadir una singularitat de Tipus II basats en minT i minO per a PR no redundants. minT i minO s'utilitzen per a identificar els dos actuadors a moure per a alliberar o evadir el PR d'una singularitat. Aquests algorismes requereixen un mesurament precís de la posa aconseguida per l'efector final. L'algorisme per a alliberar un PR d'una configuració singular s'aplica amb èxit en un controlador híbrid basat en visió artificial per al PR 3UPS+RPU. El controlador utilitza un sistema de fotogrametria per a mesurar la posa del robot a causa de la degeneració del model cinemàtic en les proximitats d'una singularitat. L'algorisme d'evació de singularitats Tipus II s'aplica a la planificació offline i en línia de trajectòries no singulars per a un mecanisme de cinc barres i el PR 3UPS+RPU. Aquestes aplicacions verifiquen el baix cost computacional i la mínima desviació introduïda en la trajectòria original pels nous algorismes. La implementació directa d'un controlador de força/posició en el PR 3UPS+RPU és insegura perquè el pacient podria portar involuntàriament al PR a una singularitat. Per tant, aquesta tesi conclou presentant un nou controlador de força/posició complementat amb l'algorisme d'evació de singularitats de Tipus II. El nou controlador s'avalua durant la rehabilitació activa d'una cama de maniquí i una cama humana no lesionada. Els resultats mostren que el nou controlador combinat manté el PR 3UPS+RPU lluny de configuracions singulars amb una desviació mínima de la trajectòria original. Per tant, aquesta tesi habilita el 3UPS+RPU PR per a la rehabilitació segura dels membres inferiors lesionats.[EN] Parallel Robots (PR)s are mechanisms where the end-effector is linked to the base by at least two open kinematics chains. The PRs offer a high payload and high accuracy, making them suitable for various applications, including human robot interaction. However, in proximity to a Type II singularity (singularity within the workspace), a PR loses control over the movements of the end-effector. The loss of control represents a major risk for users, especially in robotic rehabilitation. In the last decades, PRs have become popular in lower limb rehabilitation because of the increment in the number of people living with physical limitations. Thus, this thesis is about the detection and avoidance of Type II singularities to ensure complete control of a non-redundant PR for knee rehabilitation and diagnosis named 3UPS+RPU. In the literature, several indices exist to detect and measure the closeness to a singular configuration based on analytical and geometrical methods. However, some of these indices have no physical meaning, and they are unable to identify the actuators responsible for the loss of control. This thesis contributes two novel indices to detect and measure the proximity to a Type II singularity capable of identifying the pair of actuators responsible for the singularity. The two indices are the angles between the linear (T_i,j) and the angular (O_i,j) components of two i,j normalised Output Twist Screws (OTSs). A Type II singularity is detected when the angles T_i,j = O_i,j = 0 and its closeness is measured by the minimum T_i,j (minT) and minimum O_i,j (minO) for planar and spatial cases, respectively. The effectiveness of the indices T_i,j and O_i,j is evaluated from a theoretical and experimental perspective in a 3UPS+RPU and a five bars mechanism. Moreover, an experimental procedure is proposed for setting a proper limit of closeness to a Type II singularity by the progressive approach of the PR to singular configuration and measuring the last controllable pose. Subsequently, two novel deterministic algorithms for releasing and avoiding Type II singularities based on minT and minO are developed for non-redundant PRs. The minT and minO are used to identify the two actuators to move for release or prevent the PR from the singularity. Both algorithms require an accurate measuring of the pose reached by the end-effector. The algorithm to release a PR from a singular configuration is successfully applied in a vision-based hybrid controller for the 3UPS+RPU PR. The controller uses a photogrammetry system to measure the pose of the robot due to the degeneration of the kinematic model in the vicinity of a singularity. The Type II singularity avoidance algorithm is applied to offline and online free-singularity trajectory planning for a five-bar mechanism and the 3UPS+RPU PR. These applications verify the low computation cost and the minimum deviation introduced in the original trajectory for both novel algorithms. The direct implementation of a force/position controller in the 3UPS+RPU PR is unsafe because the patient could unintentionally drive the PR to a Type II singularity. Therefore, this thesis concludes by presenting a novel force/position controller complemented with the Type II singularity avoidance algorithm. The complemented controller is evaluated during patient-active exercises in a mannequin leg and an uninjured human limb. The results show that the novel combined controller keeps the 3UPS+RPU PR far from singular configurations with a minimum deviation on the original trajectory. Hence, this thesis enables the 3UPS+RPU PR for the safe rehabilitation of injured lower limbs.Pulloquinga Zapata, JL. (2023). A New Index for Detecting and Avoiding Type II Singularities for the Control of Non-Redundant Parallel Robots [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19427

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    A Gas Chromatographic Microsystem for Volatile Organic Compounds: Critical Components, Chemometric Algorithms, and a Laboratory Prototype for Workplace Exposure Monitoring.

    Full text link
    Current methods for evaluating worker exposures to mixtures of airborne volatile organic compounds (VOC) entail the collection of breathing-zone air samples, typically over several hours, followed by off-site laboratory analysis. Performing measurements with a direct-reading instrument worn by the worker would improve the quality of exposure data by capturing exposure dynamics within a shift. This dissertation describes work directed toward the development of a wearable, battery-powered instrument containing a gas chromatographic microsystem (mGC) made from Si-microfabricated components, which offers the potential for quantitative determinations of multiple VOCs. The core components of our μGC are a dual-adsorbent micro-preconcentrator-focuser (μPCF), a dual-μcolumn separation module, and a μsensor-array detector. The latter consists of 4-8 chemiresistors (CR) coated with monolayer-protected Au nanoparticles (MPN), which collectively yield partially selective response patterns that enhance the recognition/discrimination of VOCs. In phase one of this research we adapted a multivariate curve resolution method to the problem of differentiating and quantifying the components of chromatographically unresolved VOCs on the basis of their CR-array response patterns. Results showed that the rank of a given composite peak could be correctly determined in most cases, but, due to the low dimensionality of the array, the accuracies of recognition and quantification were less than optimal in most cases. Next, we optimized the mPCF for the capture and injection of VOCs within a specified vapor pressure range at concentrations near their respective occupational exposure limits. Using a few mg each of two high-surface-area graphitized carbons, conditions were established to permit exhaustive selective trapping of VOCs in sample volumes sufficient to meet required detection limits of all mixture components, and efficient, focused thermal desorption/injection to facilitate rapid, high-resolution separations of all components. Phase three entailed the design, assembly, and characterization of a first-generation laboratory prototype μGC. Component-level and system-level characterizations yielded a set of operating conditions suitable for numerous possible workplace exposure scenarios. The reproducible analysis of mixtures of VOCs at relevant concentrations was demonstrated; the combination of retention times and response patterns provided the identity and quantity of all analytes. Results have provided critical guidance for the next-generation wearable μGC.PhDEnvironmental Health SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133310/1/genevier_1.pd
    corecore