20,536 research outputs found

    Timing and causes of North African wet phases during the last glacial period and implications for modern human migration

    Get PDF
    We present the first speleothem-derived central North Africa rainfall record for the last glacial period. The record reveals three main wet periods at 65-61 ka, 52.5-50.5 ka and 37.5-33 ka that lead obliquity maxima and precession minima. We find additional minor wet episodes that are synchronous with Greenland interstadials. Our results demonstrate that sub-tropical hydrology is forced by both orbital cyclicity and North Atlantic moisture sources. The record shows that after the end of a Saharan wet phase around 70 ka ago, North Africa continued to intermittently receive substantially more rainfall than today, resulting in favourable environmental conditions for modern human expansion. The encounter and subsequent mixture of Neanderthals and modern humans – which, on genetic evidence, is considered to have occurred between 60 and 50 ka – occurred synchronously with the wet phase between 52.5 and 50.5 ka. Based on genetic evidence the dispersal of modern humans into Eurasia started less than 55 ka ago. This may have been initiated by dry conditions that prevailed in North Africa after 50.5 ka. The timing of a migration reversal of modern humans from Eurasia into North Africa is suggested to be coincident with the wet period between 37.5 and 33 ka

    The beginning of time? Evidence for catastrophic drought in Baringo in the early nineteenth century

    Get PDF
    New developments in the collection of palaeo-data over the past two decades have transformed our understanding of climate and environmental history in eastern Africa. This article utilises instrumental and proxy evidence of historical lake-level fluctuations from Baringo and Bogoria, along with other Rift Valley lakes, to document the timing and magnitude of hydroclimate variability at decadal to century time scales since 1750. These data allow us to construct a record of past climate variation not only for the Baringo basin proper, but also across a sizable portion of central and northern Kenya. This record is then set alongside historical evidence, from oral histories gathered amongst the peoples of northern Kenya and the Rift Valley and from contemporary observations recorded by travellers through the region, to offer a reinterpretation of human activity and its relationship to environmental history in the nineteenth century. The results reveal strong evidence of a catastrophic drought in the early nineteenth century, the effects of which radically alters our historical understanding of the character of settlement, mobility and identity within the Baringo–Bogoria basin

    Revised calendar date for the Taupo eruption derived by Âč⁎C wiggle-matching using a New Zealand kauri Âč⁎C calibration data set

    Get PDF
    Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of AD 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision Âč⁎C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium AD subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (AD 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China (c. AD 186) are both untenable. However, although their conclusion of a zero north–south Âč⁎C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) Âč⁎C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (AD 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χÂČ data, obtained from a Âč⁎C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual Âč⁎C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees)

    IR-Improved DGLAP-CS QCD Parton Showers in Pythia8

    Full text link
    We introduce the recently developed IR-improved DGLAP-CS theory into the showers in Pythia8, as this Monte Carlo event generator is in wide use at LHC. We show that, just as it was true in the IR-improved shower Monte Carlo Herwiri, which realizes the IR-improved DGLAP-CS theory in the Herwig6.5 environment, the soft limit in processes such as single heavy gauge boson production is now more physical in the IR-improved DGLAP-CS theory version of Pythia8. This opens the way to one's getting a comparison between the actual detector simulations for some of the LHC experiments between IR-improved and unimproved showers as Pythia8 is used in detector simulations at LHC whereas Herwig6.5, the environment of the only other IR-improved DGLAP-CS QCD MC in the literature, Herwiri1.031, is not any longer so used. Our achieving the availability of the IR-improved DGLAP-CS Pythia8 then is an important step in the further development of the LHC precision theory program under development by the author and his collaborators.Comment: 6 pages, 1 figur

    Wood Duck Investigations W-118-R-4-5-6 Final Report

    Get PDF
    W-118-R-4-5-6 (Final Report); issued November 20, 1998; Study I: Aerial helicopter surveys of breeding wood ducks in bottomland forest.Report issued on: November 20, 1998INHS Technical Report prepared for Illinois Department of Natural Resource

    Earth-like Habitats in Planetary Systems

    Full text link
    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.Comment: 36 Pages, 6 figures, 2014, Special Issue in Planetary and Space Science on the Helmholtz Research Alliance on Planetary Evolution and Lif

    Eurasian Arctic greening reveals teleconnections and the potential for novel ecosystems

    Get PDF
    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea ice decline and thus to the sea ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice and tundra vegetation remain poorly understood. Here we reveal a 50- year growth response over a >100,000 km2 area to a rise in summer temperature for alder (Alnus) and willow (Salix), the most abundant shrub genera respectively at and north of the continental treeline. We demonstrate that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate is important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation is especially responsive to temperature in early summer. These results have significant implications for modelling present and future Low Arctic vegetation responses to climate change, and emphasize the potential for structurally novel ecosystems to emerge fromwithin the tundra zone.Vertaisarviointia edeltÀvÀ kÀsikirjoitu

    A synthetic measure of mortality using skeletal data from ancient cemeteries: the d index

    Get PDF
    <b>Background</b>: Due to the scarcity of written sources in ancient historical periods, and thanks to the development of increasingly sophisticated methods of excavation, recognition, publication, and interpretation, archaeology has played an important role in the understanding of demographic mechanisms. It is in this context that the last decade has seen important developments in paleodemography, the use of skeletons to reconstruct the demographic dynamics of the past. <b>Objective</b>: In this study we show how skeletal data can be used to determine mortality regimes, enlarging the demographic meaning of the d index proposed by Bocquet-Appel in 2002. We apply the d index to Italian cemeteries dating from the 1st to the 15th century AD. <b>Contribution</b>: Our study contributes to the development of paleodemography, a particularly valuable method that uses large osteological samples to understand mortality trends in ancient historical periods. In this study we extend and develop the d index, introduced by Bocquet-Appel in 2002, and demonstrate its usefulness in a range of plausible demographic scenarios. By applying this method to the study of mortality in Italy from the 1st to the 15th centuries AD, we show its reliability in tracing mortality trends in periods of both normal mortality and mortality crisis

    The formation of the solar system

    Full text link
    The solar system started to form about 4.56 Gyr ago and despite the long intervening time span, there still exist several clues about its formation. The three major sources for this information are meteorites, the present solar system structure and the planet-forming systems around young stars. In this introduction we give an overview of the current understanding of the solar system formation from all these different research fields. This includes the question of the lifetime of the solar protoplanetary disc, the different stages of planet formation, their duration, and their relative importance. We consider whether meteorite evidence and observations of protoplanetary discs point in the same direction. This will tell us whether our solar system had a typical formation history or an exceptional one. There are also many indications that the solar system formed as part of a star cluster. Here we examine the types of cluster the Sun could have formed in, especially whether its stellar density was at any stage high enough to influence the properties of today's solar system. The likelihood of identifying siblings of the Sun is discussed. Finally, the possible dynamical evolution of the solar system since its formation and its future are considered.Comment: 36 pages, 7 figures, invited review in Physica Script

    A matter of months: High precision migration chronology of a Bronze Age female.

    Get PDF
    Establishing the age at which prehistoric individuals move away from their childhood residential location holds crucial information about the socio dynamics and mobility patterns in ancient societies. We present a novel combination of strontium isotope analyses performed on the over 3000 year old "Skrydstrup Woman" from Denmark, for whom we compiled a highly detailed month-scale model of her migration timeline. When combined with physical anthropological analyses this timeline can be related to the chronological age at which the residential location changed. We conducted a series of high-resolution strontium isotope analyses of hard and soft human tissues and combined these with anthropological investigations including CT-scanning and 3D visualizations. The Skrydstrup Woman lived during a pan-European period characterized by technical innovation and great social transformations stimulated by long-distance connections; consequently she represents an important part of both Danish and European prehistory. Our multidisciplinary study involves complementary biochemical, biomolecular and microscopy analyses of her scalp hair. Our results reveal that the Skrydstrup Woman was between 17-18 years old when she died, and that she moved from her place of origin -outside present day Denmark- to the Skrydstrup area in Denmark 47 to 42 months before she died. Hence, she was between 13 to 14 years old when she migrated to and resided in the area around Skrydstrup for the rest of her life. From an archaeological standpoint, this one-time and one-way movement of an elite female during the possible "age of marriageability" might suggest that she migrated with the aim of establishing an alliance between chiefdoms. Consequently, this detailed multidisciplinary investigation provides a novel tool to reconstruct high resolution chronology of individual mobility with the perspective of studying complex patterns of social and economic interaction in prehistory
    • 

    corecore