597,349 research outputs found
Recommended from our members
Flow of pH-responsive microcapsules in porous media
This article investigates the use micro-capsules, containing a gelling agent hydroxypropyl cellulose (HPC), to alter flow paths in porous media. The aim is to preferentially block-off high permeability regions, thereby diverting the flow into adjacent un-swept low permeability regions. Micro-capsules with 2 – 7 µm in diameter, were made by polymer precipitation through solvent evaporation usingpoly(4-vinyl pyridine) (PVP) as the shell material. A customized flow tank was constructed to facilitate porous media flow and both single and dual permeability experiments were conducted. Even without gelling agent, the micro-capsules gradually blocked the pore throats of the glass beads network. Following acidification a drop in permeability was observed. This was because swelling of the PVP shell constricted the pore throats. The permeability drop was observed to be more significant for low permeability regions. Flowing micro-capsules through the tank with two permeability regions in parallel, allowed the high permeability region to be selectively blocked
High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability.
The development of intestinal permeability and the penetration of microbial products are key factors associated with the onset of metabolic disease. However, the mechanisms underlying this remain unclear. Here we show that, unlike liver or adipose tissue, high fat diet (HFD)/obesity in mice does not cause monocyte/macrophage infiltration into the intestine or pro-inflammatory changes in gene expression. Rather HFD causes depletion of intestinal eosinophils associated with the onset of intestinal permeability. Intestinal eosinophil numbers were restored by returning HFD fed mice to normal chow and were unchanged in leptin-deficient (Ob/Ob) mice, indicating that eosinophil depletion is caused specifically by a high fat diet and not obesity per se. Analysis of different aspects of intestinal permeability in HFD fed and Ob/Ob mice shows an association between eosinophil depletion and ileal paracelullar permeability, as well as leakage of albumin into the feces, but not overall permeability to FITC dextran. These findings provide the first evidence that a high fat diet causes intestinal eosinophil depletion, rather than inflammation, which may contribute to defective barrier integrity and the onset of metabolic disease
The comparative study of nursing pads by electrospun cellulose acetate, polyethylene oxide and thermoplastic polyurethane nanofibers
This study summarizes the general information about nursing pads and novel electrospun nanofiber mats as potential component for nursing pads. It also compares electrospun thermoplastic polyurethane (TPU), cellulose acetate (CA) and polyethylene oxide (PEO) nanofibers with a polypropylene conventional disposable nursing pad (NP) in terms of hydrophilicity, breathability, air permeability and swelling properties. Nanofiber mats prepared by the electrospinning method have unique properties such as smooth surface, high specific surface area and high porosity with fine pores which will lead to improved wicking properties. These properties make nanofibers potential component for disposable nursing pads. Mean diameters of produced nanofibers were 284.39, 609.70 and 219.30 nm for CA, TPU and PEO, respectively. Water contact angle measurement revealed that these nanofibers show good wettability properties better than commercial nonwoven nursing mat and air permeability results revealed that these nanofibrous mats have considerably adequate permeability. Besides, water vapor permeability results showed these nanofibers still show good breathability despite their compact structure. © Published under licence by IOP Publishing Ltd
Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys
The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated
Glutamate-mediated blood-brain barrier opening. implications for neuroprotection and drug delivery
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders.
SIGNIFICANCE STATEMENT:
In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders
Electromagnetic induction in non-uniform domains
Kinematic simulations of the induction equation are carried out for different
setups suitable for the von-K\'arm\'an-Sodium (VKS) dynamo experiment. Material
properties of the flow driving impellers are considered by means of high
conducting and high permeability disks that are present in a cylindrical volume
filled with a conducting fluid. Two entirely different numerical codes are
mutually validated by showing quantitative agreement on Ohmic decay and
kinematic dynamo problems using various configurations and physical parameters.
Field geometry and growth rates are strongly modified by the material
properties of the disks even if the high permeability/high conductivity
material is localized within a quite thin region. In contrast the influence of
external boundary conditions remains small. Utilizing a VKS like mean fluid
flow and high permeability disks yields a reduction of the critical magnetic
Reynolds number for the onset of dynamo action of the simplest non-axisymmetric
field mode. However this decrease is not sufficient to become relevant in the
VKS experiment. Furthermore, the reduction of Rm_c is essentially influenced by
tiny changes in the flow configuration so that the result is not very robust
against small modifications of setup and properties of turbulence
Synthesis and properties of a new AB-cross-linked copolymer membrane system
The alcohol permeability and permselectivity properties as well as the morphology of membranes made of a newly developed AB-cross-linked copolymer system composed of elastomeric and glassy components were investigated. The copolymer was synthesized by a hydrosilylation reaction between poly(styrene-stat-isoprenes) (Mn from 40,000 to 100,000 g/mol) with high content in unsaturated side groups (≈ 60% of entire isoprene content) and polyhydrogen polysiloxanes with varying SiH content (0.75 10.7 mol %) and molecular mass, Mn, from 2,500 to 36,000 g/mol. A two-track approach was taken to determine the morphology of the copolymer system. The first employed the usual polymer characterization methods such as electron microscopy, DSC, IR spectroscopy, the density gradient method, and mechanical measurements. For the second approach, different copolymer permeability models were tested so as to give an insight into the copolymer morphology. As a final step, the permeability and permselectivity properties were correlated with the morphological structure of the copolymer system. It was observed that the respective continuous microphase dominated the copolymer's physical properties, as, e.g., permeability, permselectivity, and mechanical properties. The microphase inversion in the copolymer system was proved by the permeability/permselectivity as well as by the mechanical measurements
Frequency-dependent streaming potentials: a review
The interpretation of seismoelectric observations involves the dynamic
electrokinetic coupling, which is related to the streaming potential
coefficient. We describe the different models of the frequency-dependent
streaming potential, mainly the Packard's and the Pride's model. We compare the
transition frequency separating low-frequency viscous flow and high-frequency
inertial flow, for dynamic permeability and dynamic streaming potential. We
show that the transition frequency, on a various collection of samples for
which both formation factor and permeability are measured, is predicted to
depend on the permeability as inversely proportional to the permeability. We
review the experimental setups built to be able to perform dynamic
measurements. And we present some measurements and calculations of the dynamic
streaming potential
- …
