24 research outputs found

    Lack of compactness in the 2D critical Sobolev embedding, the general case

    Get PDF
    This paper is devoted to the description of the lack of compactness of the Sobolev embedding of H1(R2)H^1(\R^2) in the critical Orlicz space {\cL}(\R^2). It turns out that up to cores our result is expressed in terms of the concentration-type examples derived by J. Moser in \cite{M} as in the radial setting investigated in \cite{BMM}. However, the analysis we used in this work is strikingly different from the one conducted in the radial case which is based on an L∞L^ \infty estimate far away from the origin and which is no longer valid in the general framework. Within the general framework of H1(R2)H^1(\R^2), the strategy we adopted to build the profile decomposition in terms of examples by Moser concentrated around cores is based on capacity arguments and relies on an extraction process of mass concentrations. The essential ingredient to extract cores consists in proving by contradiction that if the mass responsible for the lack of compactness of the Sobolev embedding in the Orlicz space is scattered, then the energy used would exceed that of the starting sequence.Comment: Submitte

    Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs

    Full text link
    Prediction error quantification in machine learning has been left out of most methodological investigations of neural networks, for both purely data-driven and physics-informed approaches. Beyond statistical investigations and generic results on the approximation capabilities of neural networks, we present a rigorous upper bound on the prediction error of physics-informed neural networks. This bound can be calculated without the knowledge of the true solution and only with a priori available information about the characteristics of the underlying dynamical system governed by a partial differential equation. We apply this a posteriori error bound exemplarily to four problems: the transport equation, the heat equation, the Navier-Stokes equation and the Klein-Gordon equation

    Schrödinger operators in the twentieth century

    Get PDF
    This paper reviews the past fifty years of work on spectral theory and related issues in nonrelativistic quantum mechanics

    Sommaire / Contents tome 346, janvier–décembre 2008

    Get PDF

    Differentiable positive definite kernels on two-point homogeneous spaces

    Get PDF
    In this work we study continuous kernels on compact two-point homogeneous spaces which are positive definite and zonal (isotropic). Such kernels were characterized by R. Gangolli some forty years ago and are very useful for solving scattered data interpolation problems on the spaces. In the case the space is the d-dimensional unit sphere, J. Ziegel showed in 2013 that the radial part of a continuous positive definite and zonal kernel is continuously differentiable up to order ⌊(d−1)/2⌋ in the interior of its domain. The main issue here is to obtain a similar result for all the other compact two-point homogeneous spaces.CNPq (grant 141908/2015-7)FAPESP (grant 2014/00277-5
    corecore