3 research outputs found

    A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, with an Application to HDR Imaging

    Full text link
    Recently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this work, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: Firstly it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g. inpainting of missing pixels or zooming). Secondly it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed scheme.Comment: Some figures are reduced to comply with arxiv's size constraints. Full size images are available as HAL technical report hal-01107519v5, IEEE Transactions on Computational Imaging, 201

    Single Shot High Dynamic Range Imaging Using Piecewise Linear Estimators

    Get PDF
    International audienceBuilding high dynamic range (HDR) images by combining photographs captured with different exposure times present several drawbacks, such as the need for global alignment and motion estimation in order to avoid ghosting artifacts. The concept of spatially varying pixel exposures (SVE) proposed by Nayar et al. enables to capture in only one shot a very large range of exposures while avoiding these limitations. In this paper, we propose a novel approach to generate HDR images from a single shot acquired with spatially varying pixel exposures. The proposed method makes use of the assumption stating that the distribution of patches in an image is well represented by a Gaussian Mixture Model. Drawing on a precise modeling of the camera acquisition noise, we extend the piecewise linear estimation strategy developed by Yu et al. for image restoration. The proposed method permits to reconstruct an irradiance image by simultaneously estimating saturated and under-exposed pixels and denoising existing ones, showing significant improvements over existing approaches
    corecore