7,358 research outputs found

    Sparse-Input Neural Networks for High-dimensional Nonparametric Regression and Classification

    Full text link
    Neural networks are usually not the tool of choice for nonparametric high-dimensional problems where the number of input features is much larger than the number of observations. Though neural networks can approximate complex multivariate functions, they generally require a large number of training observations to obtain reasonable fits, unless one can learn the appropriate network structure. In this manuscript, we show that neural networks can be applied successfully to high-dimensional settings if the true function falls in a low dimensional subspace, and proper regularization is used. We propose fitting a neural network with a sparse group lasso penalty on the first-layer input weights. This results in a neural net that only uses a small subset of the original features. In addition, we characterize the statistical convergence of the penalized empirical risk minimizer to the optimal neural network: we show that the excess risk of this penalized estimator only grows with the logarithm of the number of input features; and we show that the weights of irrelevant features converge to zero. Via simulation studies and data analyses, we show that these sparse-input neural networks outperform existing nonparametric high-dimensional estimation methods when the data has complex higher-order interactions

    Feature Selection using Stochastic Gates

    Full text link
    Feature selection problems have been extensively studied for linear estimation, for instance, Lasso, but less emphasis has been placed on feature selection for non-linear functions. In this study, we propose a method for feature selection in high-dimensional non-linear function estimation problems. The new procedure is based on minimizing the â„“0\ell_0 norm of the vector of indicator variables that represent if a feature is selected or not. Our approach relies on the continuous relaxation of Bernoulli distributions, which allows our model to learn the parameters of the approximate Bernoulli distributions via gradient descent. This general framework simultaneously minimizes a loss function while selecting relevant features. Furthermore, we provide an information-theoretic justification of incorporating Bernoulli distribution into our approach and demonstrate the potential of the approach on synthetic and real-life applications.Comment: Published in ICML 202

    Harmless interpolation of noisy data in regression

    Full text link
    A continuing mystery in understanding the empirical success of deep neural networks is their ability to achieve zero training error and generalize well, even when the training data is noisy and there are more parameters than data points. We investigate this overparameterized regime in linear regression, where all solutions that minimize training error interpolate the data, including noise. We characterize the fundamental generalization (mean-squared) error of any interpolating solution in the presence of noise, and show that this error decays to zero with the number of features. Thus, overparameterization can be explicitly beneficial in ensuring harmless interpolation of noise. We discuss two root causes for poor generalization that are complementary in nature -- signal "bleeding" into a large number of alias features, and overfitting of noise by parsimonious feature selectors. For the sparse linear model with noise, we provide a hybrid interpolating scheme that mitigates both these issues and achieves order-optimal MSE over all possible interpolating solutions.Comment: 52 pages, expanded version of the paper presented at ITA in San Diego in Feb 2019, ISIT in Paris in July 2019, at Simons in July, and as a plenary at ITW in Visby in August 201

    Merging versus Ensembling in Multi-Study Machine Learning: Theoretical Insight from Random Effects

    Full text link
    A critical decision point when training predictors using multiple studies is whether these studies should be combined or treated separately. We compare two multi-study learning approaches in the presence of potential heterogeneity in predictor-outcome relationships across datasets. We consider 1) merging all of the datasets and training a single learner, and 2) multi-study ensembling, which involves training a separate learner on each dataset and combining the predictions resulting from each learner. In a linear regression setting, we show analytically and confirm via simulation that merging yields lower prediction error than ensembling when the predictor-outcome relationships are relatively homogeneous across studies. However, as cross-study heterogeneity increases, there exists a transition point beyond which ensembling outperforms merging. We provide analytic expressions for the transition point in various scenarios, study asymptotic properties, and illustrate how transition point theory can be used for deciding when studies should be combined with an application from metabolomics

    Machine Learning Methods Economists Should Know About

    Full text link
    We discuss the relevance of the recent Machine Learning (ML) literature for economics and econometrics. First we discuss the differences in goals, methods and settings between the ML literature and the traditional econometrics and statistics literatures. Then we discuss some specific methods from the machine learning literature that we view as important for empirical researchers in economics. These include supervised learning methods for regression and classification, unsupervised learning methods, as well as matrix completion methods. Finally, we highlight newly developed methods at the intersection of ML and econometrics, methods that typically perform better than either off-the-shelf ML or more traditional econometric methods when applied to particular classes of problems, problems that include causal inference for average treatment effects, optimal policy estimation, and estimation of the counterfactual effect of price changes in consumer choice models

    Horseshoe Regularization for Machine Learning in Complex and Deep Models

    Full text link
    Since the advent of the horseshoe priors for regularization, global-local shrinkage methods have proved to be a fertile ground for the development of Bayesian methodology in machine learning, specifically for high-dimensional regression and classification problems. They have achieved remarkable success in computation, and enjoy strong theoretical support. Most of the existing literature has focused on the linear Gaussian case; see Bhadra et al. (2019b) for a systematic survey. The purpose of the current article is to demonstrate that the horseshoe regularization is useful far more broadly, by reviewing both methodological and computational developments in complex models that are more relevant to machine learning applications. Specifically, we focus on methodological challenges in horseshoe regularization in nonlinear and non-Gaussian models; multivariate models; and deep neural networks. We also outline the recent computational developments in horseshoe shrinkage for complex models along with a list of available software implementations that allows one to venture out beyond the comfort zone of the canonical linear regression problems

    Bridgeout: stochastic bridge regularization for deep neural networks

    Full text link
    A major challenge in training deep neural networks is overfitting, i.e. inferior performance on unseen test examples compared to performance on training examples. To reduce overfitting, stochastic regularization methods have shown superior performance compared to deterministic weight penalties on a number of image recognition tasks. Stochastic methods such as Dropout and Shakeout, in expectation, are equivalent to imposing a ridge and elastic-net penalty on the model parameters, respectively. However, the choice of the norm of weight penalty is problem dependent and is not restricted to {L1,L2}\{L_1,L_2\}. Therefore, in this paper we propose the Bridgeout stochastic regularization technique and prove that it is equivalent to an LqL_q penalty on the weights, where the norm qq can be learned as a hyperparameter from data. Experimental results show that Bridgeout results in sparse model weights, improved gradients and superior classification performance compared to Dropout and Shakeout on synthetic and real datasets

    A weighted random survival forest

    Full text link
    A weighted random survival forest is presented in the paper. It can be regarded as a modification of the random forest improving its performance. The main idea underlying the proposed model is to replace the standard procedure of averaging used for estimation of the random survival forest hazard function by weighted avaraging where the weights are assigned to every tree and can be veiwed as training paremeters which are computed in an optimal way by solving a standard quadratic optimization problem maximizing Harrell's C-index. Numerical examples with real data illustrate the outperformance of the proposed model in comparison with the original random survival forest

    An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality Discovery

    Full text link
    While most classical approaches to Granger causality detection repose upon linear time series assumptions, many interactions in neuroscience and economics applications are nonlinear. We develop an approach to nonlinear Granger causality detection using multilayer perceptrons where the input to the network is the past time lags of all series and the output is the future value of a single series. A sufficient condition for Granger non-causality in this setting is that all of the outgoing weights of the input data, the past lags of a series, to the first hidden layer are zero. For estimation, we utilize a group lasso penalty to shrink groups of input weights to zero. We also propose a hierarchical penalty for simultaneous Granger causality and lag estimation. We validate our approach on simulated data from both a sparse linear autoregressive model and the sparse and nonlinear Lorenz-96 model.Comment: Accepted to the NIPS Time Series Workshop 201

    Machine Learning for Survival Analysis: A Survey

    Full text link
    Accurately predicting the time of occurrence of an event of interest is a critical problem in longitudinal data analysis. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experience any event during the monitoring period. Such a phenomenon is called censoring which can be effectively handled using survival analysis techniques. Traditionally, statistical approaches have been widely developed in the literature to overcome this censoring issue. In addition, many machine learning algorithms are adapted to effectively handle survival data and tackle other challenging problems that arise in real-world data. In this survey, we provide a comprehensive and structured review of the representative statistical methods along with the machine learning techniques used in survival analysis and provide a detailed taxonomy of the existing methods. We also discuss several topics that are closely related to survival analysis and illustrate several successful applications in various real-world application domains. We hope that this paper will provide a more thorough understanding of the recent advances in survival analysis and offer some guidelines on applying these approaches to solve new problems that arise in applications with censored data
    • …
    corecore