5 research outputs found

    RTL Design Quality Checks for Soft IPs

    Get PDF
    Soft IPs are architectural modules which are delivered in the form of synthesizable RTL level codes written in some HDL (hardware descriptive language) like Verilog or VHDL or System Verilog. They are technology independent and offer high degree of modification flexibility. RTL is the complete abstraction of our design. Since SOC complexity is growing day by day with new technologies and requirement, it will be very much difficult to debug and fix issues after physical level. So to reduce effort and increase efficiency and accuracy it is necessary to fix most of the bugs in RTL level. Also if we are using soft IP, then our bug free IP can be used by third party. So early detection of bugs helps us not to go back to entire design and do all the process again and again. One of the important issue at RTL level of a design is the Clock Domain Crossing (CDC) problem. This is the issue which affects the performance at each and every stage of the design flow. Failure in fixing these issues at the earlier stage makes the design unreliable and design performance collapses. The main issue in real time clock designs are the metastability issue. Although we cannot check or see these issues using our simulator but we have to make preventions at RTL level. This is done by restructuring the design and adding required synchronizers. One more important area of consideration in VLSI design is power consumption. In modern low power designs low power is a key factor. So design consuming less power is preferred over design consuming more power. This decision should be made as early as possible. RTL quality check helps us on this aspect. Using different tools power estimation can be performed at RTL stage which saves lots of efforts in redesigning. This project aims at checking clock domain crossing faults at RTL stage and doing redesign of circuit to eliminate those faults. Also an effort is made to compare quality of two designs in terms of delay, power consumption and area

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    High Rate Data Synchronization in GALS SoCs

    No full text
    corecore