19,385 research outputs found

    Logistic Knowledge Tracing: A Constrained Framework for Learner Modeling

    Full text link
    Adaptive learning technology solutions often use a learner model to trace learning and make pedagogical decisions. The present research introduces a formalized methodology for specifying learner models, Logistic Knowledge Tracing (LKT), that consolidates many extant learner modeling methods. The strength of LKT is the specification of a symbolic notation system for alternative logistic regression models that is powerful enough to specify many extant models in the literature and many new models. To demonstrate the generality of LKT, we fit 12 models, some variants of well-known models and some newly devised, to 6 learning technology datasets. The results indicated that no single learner model was best in all cases, further justifying a broad approach that considers multiple learner model features and the learning context. The models presented here avoid student-level fixed parameters to increase generalizability. We also introduce features to stand in for these intercepts. We argue that to be maximally applicable, a learner model needs to adapt to student differences, rather than needing to be pre-parameterized with the level of each student's ability

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover
    • …
    corecore