16,752 research outputs found

    Recent Advances in Convolutional Neural Network Acceleration

    Full text link
    In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and weight sharing, can reduce the number of parameters and increase processing speed during training and inference. However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN's further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research papers. We propose a taxonomy in terms of three levels, i.e.~structure level, algorithm level, and implementation level, for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression, algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives of these acceleration and optimization methods within each level. The discussion shows that the methods in each level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a comprehensive reference for researchers who are interested in CNN acceleration.Comment: submitted to Neurocomputin

    O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

    Full text link
    We present O-CNN, an Octree-based Convolutional Neural Network (CNN) for 3D shape analysis. Built upon the octree representation of 3D shapes, our method takes the average normal vectors of a 3D model sampled in the finest leaf octants as input and performs 3D CNN operations on the octants occupied by the 3D shape surface. We design a novel octree data structure to efficiently store the octant information and CNN features into the graphics memory and execute the entire O-CNN training and evaluation on the GPU. O-CNN supports various CNN structures and works for 3D shapes in different representations. By restraining the computations on the octants occupied by 3D surfaces, the memory and computational costs of the O-CNN grow quadratically as the depth of the octree increases, which makes the 3D CNN feasible for high-resolution 3D models. We compare the performance of the O-CNN with other existing 3D CNN solutions and demonstrate the efficiency and efficacy of O-CNN in three shape analysis tasks, including object classification, shape retrieval, and shape segmentation

    PZnet: Efficient 3D ConvNet Inference on Manycore CPUs

    Full text link
    Convolutional nets have been shown to achieve state-of-the-art accuracy in many biomedical image analysis tasks. Many tasks within biomedical analysis domain involve analyzing volumetric (3D) data acquired by CT, MRI and Microscopy acquisition methods. To deploy convolutional nets in practical working systems, it is important to solve the efficient inference problem. Namely, one should be able to apply an already-trained convolutional network to many large images using limited computational resources. In this paper we present PZnet, a CPU-only engine that can be used to perform inference for a variety of 3D convolutional net architectures. PZNet outperforms MKL-based CPU implementations of PyTorch and Tensorflow by more than 3.5x for the popular U-net architecture. Moreover, for 3D convolutions with low featuremap numbers, cloud CPU inference with PZnet outperfroms cloud GPU inference in terms of cost efficiency

    Deep and Wide Multiscale Recursive Networks for Robust Image Labeling

    Full text link
    Feedforward multilayer networks trained by supervised learning have recently demonstrated state of the art performance on image labeling problems such as boundary prediction and scene parsing. As even very low error rates can limit practical usage of such systems, methods that perform closer to human accuracy remain desirable. In this work, we propose a new type of network with the following properties that address what we hypothesize to be limiting aspects of existing methods: (1) a `wide' structure with thousands of features, (2) a large field of view, (3) recursive iterations that exploit statistical dependencies in label space, and (4) a parallelizable architecture that can be trained in a fraction of the time compared to benchmark multilayer convolutional networks. For the specific image labeling problem of boundary prediction, we also introduce a novel example weighting algorithm that improves segmentation accuracy. Experiments in the challenging domain of connectomic reconstruction of neural circuity from 3d electron microscopy data show that these "Deep And Wide Multiscale Recursive" (DAWMR) networks lead to new levels of image labeling performance. The highest performing architecture has twelve layers, interwoven supervised and unsupervised stages, and uses an input field of view of 157,464 voxels (54354^3) to make a prediction at each image location. We present an associated open source software package that enables the simple and flexible creation of DAWMR networks

    Reconfigurable Hardware Accelerators: Opportunities, Trends, and Challenges

    Full text link
    With the emerging big data applications of Machine Learning, Speech Recognition, Artificial Intelligence, and DNA Sequencing in recent years, computer architecture research communities are facing the explosive scale of various data explosion. To achieve high efficiency of data-intensive computing, studies of heterogeneous accelerators which focus on latest applications, have become a hot issue in computer architecture domain. At present, the implementation of heterogeneous accelerators mainly relies on heterogeneous computing units such as Application-specific Integrated Circuit (ASIC), Graphics Processing Unit (GPU), and Field Programmable Gate Array (FPGA). Among the typical heterogeneous architectures above, FPGA-based reconfigurable accelerators have two merits as follows: First, FPGA architecture contains a large number of reconfigurable circuits, which satisfy requirements of high performance and low power consumption when specific applications are running. Second, the reconfigurable architectures of employing FPGA performs prototype systems rapidly and features excellent customizability and reconfigurability. Nowadays, in top-tier conferences of computer architecture, emerging a batch of accelerating works based on FPGA or other reconfigurable architectures. To better review the related work of reconfigurable computing accelerators recently, this survey reserves latest high-level research products of reconfigurable accelerator architectures and algorithm applications as the basis. In this survey, we compare hot research issues and concern domains, furthermore, analyze and illuminate advantages, disadvantages, and challenges of reconfigurable accelerators. In the end, we prospect the development tendency of accelerator architectures in the future, hoping to provide a reference for computer architecture researchers

    Dual Path Networks

    Full text link
    In this work, we present a simple, highly efficient and modularized Dual Path Network (DPN) for image classification which presents a new topology of connection paths internally. By revealing the equivalence of the state-of-the-art Residual Network (ResNet) and Densely Convolutional Network (DenseNet) within the HORNN framework, we find that ResNet enables feature re-usage while DenseNet enables new features exploration which are both important for learning good representations. To enjoy the benefits from both path topologies, our proposed Dual Path Network shares common features while maintaining the flexibility to explore new features through dual path architectures. Extensive experiments on three benchmark datasets, ImagNet-1k, Places365 and PASCAL VOC, clearly demonstrate superior performance of the proposed DPN over state-of-the-arts. In particular, on the ImagNet-1k dataset, a shallow DPN surpasses the best ResNeXt-101(64x4d) with 26% smaller model size, 25% less computational cost and 8% lower memory consumption, and a deeper DPN (DPN-131) further pushes the state-of-the-art single model performance with about 2 times faster training speed. Experiments on the Places365 large-scale scene dataset, PASCAL VOC detection dataset, and PASCAL VOC segmentation dataset also demonstrate its consistently better performance than DenseNet, ResNet and the latest ResNeXt model over various applications.Comment: for code and models, see https://github.com/cypw/DPN

    Fast and Accurate 3D Medical Image Segmentation with Data-swapping Method

    Full text link
    Deep neural network models used for medical image segmentation are large because they are trained with high-resolution three-dimensional (3D) images. Graphics processing units (GPUs) are widely used to accelerate the trainings. However, the memory on a GPU is not large enough to train the models. A popular approach to tackling this problem is patch-based method, which divides a large image into small patches and trains the models with these small patches. However, this method would degrade the segmentation quality if a target object spans multiple patches. In this paper, we propose a novel approach for 3D medical image segmentation that utilizes the data-swapping, which swaps out intermediate data from GPU memory to CPU memory to enlarge the effective GPU memory size, for training high-resolution 3D medical images without patching. We carefully tuned parameters in the data-swapping method to obtain the best training performance for 3D U-Net, a widely used deep neural network model for medical image segmentation. We applied our tuning to train 3D U-Net with full-size images of 192 x 192 x 192 voxels in brain tumor dataset. As a result, communication overhead, which is the most important issue, was reduced by 17.1%. Compared with the patch-based method for patches of 128 x 128 x 128 voxels, our training for full-size images achieved improvement on the mean Dice score by 4.48% and 5.32 % for detecting whole tumor sub-region and tumor core sub-region, respectively. The total training time was reduced from 164 hours to 47 hours, resulting in 3.53 times of acceleration.Comment: 13 page

    Accelerating Very Deep Convolutional Networks for Classification and Detection

    Full text link
    This paper aims to accelerate the test-time computation of convolutional neural networks (CNNs), especially very deep CNNs that have substantially impacted the computer vision community. Unlike previous methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We develop an effective solution to the resulting nonlinear optimization problem without the need of stochastic gradient descent (SGD). More importantly, while previous methods mainly focus on optimizing one or two layers, our nonlinear method enables an asymmetric reconstruction that reduces the rapidly accumulated error when multiple (e.g., >=10) layers are approximated. For the widely used very deep VGG-16 model, our method achieves a whole-model speedup of 4x with merely a 0.3% increase of top-5 error in ImageNet classification. Our 4x accelerated VGG-16 model also shows a graceful accuracy degradation for object detection when plugged into the Fast R-CNN detector.Comment: TPAMI, accepted. arXiv admin note: substantial text overlap with arXiv:1411.422

    4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

    Full text link
    In many robotics and VR/AR applications, 3D-videos are readily-available sources of input (a continuous sequence of depth images, or LIDAR scans). However, those 3D-videos are processed frame-by-frame either through 2D convnets or 3D perception algorithms. In this work, we propose 4-dimensional convolutional neural networks for spatio-temporal perception that can directly process such 3D-videos using high-dimensional convolutions. For this, we adopt sparse tensors and propose the generalized sparse convolution that encompasses all discrete convolutions. To implement the generalized sparse convolution, we create an open-source auto-differentiation library for sparse tensors that provides extensive functions for high-dimensional convolutional neural networks. We create 4D spatio-temporal convolutional neural networks using the library and validate them on various 3D semantic segmentation benchmarks and proposed 4D datasets for 3D-video perception. To overcome challenges in the 4D space, we propose the hybrid kernel, a special case of the generalized sparse convolution, and the trilateral-stationary conditional random field that enforces spatio-temporal consistency in the 7D space-time-chroma space. Experimentally, we show that convolutional neural networks with only generalized 3D sparse convolutions can outperform 2D or 2D-3D hybrid methods by a large margin. Also, we show that on 3D-videos, 4D spatio-temporal convolutional neural networks are robust to noise, outperform 3D convolutional neural networks and are faster than the 3D counterpart in some cases.Comment: CVPR'1

    A Survey on Deep Learning Methods for Robot Vision

    Full text link
    Deep learning has allowed a paradigm shift in pattern recognition, from using hand-crafted features together with statistical classifiers to using general-purpose learning procedures for learning data-driven representations, features, and classifiers together. The application of this new paradigm has been particularly successful in computer vision, in which the development of deep learning methods for vision applications has become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main purpose of this survey is to address the use of deep learning in robot vision. To achieve this, a comprehensive overview of deep learning and its usage in computer vision is given, that includes a description of the most frequently used neural models and their main application areas. Then, the standard methodology and tools used for designing deep-learning based vision systems are presented. Afterwards, a review of the principal work using deep learning in robot vision is presented, as well as current and future trends related to the use of deep learning in robotics. This survey is intended to be a guide for the developers of robot vision systems
    corecore