1 research outputs found

    Protection architectures for multi-wavelength optical networks.

    Get PDF
    by Lee Chi Man.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 63-65).Abstracts in English and Chinese.Chapter CHAPTER 1 --- INTRODUCTION --- p.5Chapter 1.1 --- Background --- p.5Chapter 1.1.1 --- Backbone network - Long haul mesh network problem --- p.5Chapter 1.1.2 --- Access network ´ؤ Last mile problems --- p.8Chapter 1.1.3 --- Network integration --- p.9Chapter 1.2 --- SUMMARY OF INSIGHTS --- p.10Chapter 1.3 --- Contribution of this thesis --- p.11Chapter 1.4 --- Structure of the thesis --- p.11Chapter CHAPTER 2 --- PREVIOUS PROTECTION ARCHITECTURES --- p.12Chapter 2.1 --- Introduction --- p.12Chapter 2.2 --- Traditional physical protection architectures in metro area --- p.13Chapter 2.2.1 --- Self healing ring --- p.17Chapter 2.2.2 --- Some terminology in ring protection --- p.13Chapter 2.2.3 --- Unidirectional path-switched rings (UPSR) [17] --- p.13Chapter 2.2.4 --- Bidirectional line-switched rings (BLSR) [17] --- p.14Chapter 2.2.5 --- Ring interconnection and dual homing [17] --- p.16Chapter 2.3 --- Traditional physical protection architectures in access networks --- p.17Chapter 2.3.1 --- Basic architecture in passive optical networks --- p.17Chapter 2.3.2 --- Fault management issue in access networks --- p.18Chapter 2.3.3 --- Some protection architectures --- p.18Chapter 2.4 --- Recent protection architectures on a ccess networks --- p.21Chapter 2.4.1 --- Star-Ring-Bus architecture --- p.21Chapter 2.5 --- Concluding remarks --- p.22Chapter CHAPTER 3 --- GROUP PROTECTION ARCHITECTURE (GPA) FOR TRAFFIC RESTORATION IN MULTI- WAVELENGTH PASSIVE OPTICAL NETWORKS --- p.23Chapter 3.1 --- Background --- p.23Chapter 3.2 --- Organization of Chapter 3 --- p.24Chapter 3.3 --- Overview of Group Protection Architecture --- p.24Chapter 3.3.1 --- Network architecture --- p.24Chapter 3.3.2 --- Wavelength assignment --- p.25Chapter 3.3.3 --- Normal operation of the scheme --- p.25Chapter 3.3.4 --- Protection mechanism --- p.26Chapter 3.4 --- Enhanced GPA architecture --- p.27Chapter 3.4.1 --- Network architecture --- p.27Chapter 3.4.2 --- Wavelength assignment --- p.28Chapter 3.4.3 --- Realization of network elements --- p.28Chapter 3.4.3.1 --- Optical line terminal (OLT) --- p.28Chapter 3.4.3.2 --- Remote node (RN) --- p.29Chapter 3.4.3.3 --- Realization of optical network unit (ONU) --- p.30Chapter 3.4.4 --- Protection switching and restoration --- p.31Chapter 3.4.5 --- Experimental demonstration --- p.31Chapter 3.5 --- Conclusion --- p.33Chapter CHAPTER 4 --- A NOVEL CONE PROTECTION ARCHITECTURE (CPA) SCHEME FOR WDM PASSIVE OPTICAL ACCESS NETWORKS --- p.35Chapter 4.1 --- Introduction --- p.35Chapter 4.2 --- Single-side Cone Protection Architecture (SS-CPA) --- p.36Chapter 4.2.1 --- Network topology of SS-CPA --- p.36Chapter 4.2.2 --- Wavelength assignment of SS-CPA --- p.36Chapter 4.2.3 --- Realization of remote node --- p.37Chapter 4.2.4 --- Realization of optical network unit --- p.39Chapter 4.2.5 --- Two types of failures --- p.40Chapter 4.2.6 --- Protection mechanism against failure --- p.40Chapter 4.2.6.1 --- Multi-failures of type I failure --- p.40Chapter 4.2.6.2 --- Type II failure --- p.40Chapter 4.2.7 --- Experimental demonstration --- p.41Chapter 4.2.8 --- Power budget --- p.42Chapter 4.2.9 --- Protection capability analysis --- p.42Chapter 4.2.10 --- Non-fully-connected case and its extensibility for addition --- p.42Chapter 4.2.11 --- Scalability --- p.43Chapter 4.2.12 --- Summary --- p.43Chapter 4.3 --- Comparison between GPA and SS-CPA scheme --- p.43Chapter 4.1 --- Resources comparison --- p.43Chapter 4.2 --- Protection capability comparison --- p.44Chapter 4.4 --- Concluding remarks --- p.45Chapter CHAPTER 5 --- MUL 77- WA VELENGTH MUL TICAST NETWORK IN PASSIVE OPTICAL NETWORK --- p.46Chapter 5.1 --- Introduction --- p.46Chapter 5.2 --- Organization of this chapter --- p.47Chapter 5.3 --- Simple Group Multicast Network (SGMN) scheme --- p.47Chapter 5.3.1 --- Network design principle --- p.47Chapter 5.3.2 --- Wavelength assignment of SGMN --- p.48Chapter 5.3.3 --- Realization of remote node --- p.49Chapter 5.3.3 --- Realization of optical network unit --- p.50Chapter 5.3.4 --- Power budget --- p.51Chapter 5.4 --- A mulTI- wa velength a ccess network with reconfigurable multicast …… --- p.51Chapter 5.4.1 --- Motivation --- p.51Chapter 5.4.2 --- Background --- p.51Chapter 5.4.3 --- Network design principle --- p.52Chapter 5.4.4 --- Wavelength assignment --- p.52Chapter 5.4.5 --- Remote Node design --- p.53Chapter 5.4.6 --- Optical network unit design --- p.54Chapter 5.4.7 --- Multicast connection pattern --- p.55Chapter 5.4.8 --- Multicast group selection in OLT --- p.57Chapter 5.4.9 --- Scalability --- p.57Chapter 5.4.10 --- Experimental configuration --- p.58Chapter 5.4.11 --- Concluding remarks --- p.59Chapter CHAPTER 6 --- CONCLUSIONS --- p.60LIST OF PUBLICATIONS: --- p.62REFERENCES: --- p.6
    corecore