2,801 research outputs found

    Generative Models for Novelty Detection Applications in abnormal event and situational changedetection from data series

    Get PDF
    Novelty detection is a process for distinguishing the observations that differ in some respect from the observations that the model is trained on. Novelty detection is one of the fundamental requirements of a good classification or identification system since sometimes the test data contains observations that were not known at the training time. In other words, the novelty class is often is not presented during the training phase or not well defined. In light of the above, one-class classifiers and generative methods can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end-to-end model is a challenging task itself. Therefore, detecting the Novel classes in unsupervised and semi-supervised settings is a crucial step in such tasks. In this thesis, we propose several methods to model the novelty detection problem in unsupervised and semi-supervised fashion. The proposed frameworks applied to different related applications of anomaly and outlier detection tasks. The results show the superior of our proposed methods in compare to the baselines and state-of-the-art methods

    Learning probabilistic interaction models

    Get PDF
    We live in a multi-modal world; therefore it comes as no surprise that the human brain is tailored for the integration of multi-sensory input. Inspired by the human brain, the multi-sensory data is used in Artificial Intelligence (AI) for teaching different concepts to computers. Autonomous Agents (AAs) are AI systems that sense and act autonomously in complex dynamic environments. Such agents can build up Self-Awareness (SA) by describing their experiences through multi-sensorial information with appropriate models and correlating them incrementally with the currently perceived situation to continuously expand their knowledge. This thesis proposes methods to learn such awareness models for AAs. These models include SA and situational awareness models in order to perceive and understand itself (self variables) and its surrounding environment (external variables) at the same time. An agent is considered self-aware when it can dynamically observe and understand itself and its surrounding through different proprioceptive and exteroceptive sensors which facilitate learning and maintaining a contextual representation by processing the observed multi-sensorial data. We proposed a probabilistic framework for generative and descriptive dynamic models that can lead to a computationally efficient SA system. In general, generative models facilitate the prediction of future states while descriptive models enable to select the representation that best fits the current observation. The proposed framework employs a Probabilistic Graphical Models (PGMs) such as Dynamic Bayesian Networks (DBNs) that represent a set of variables and their conditional dependencies. Once we obtain this probabilistic representation, the latter allows the agent to model interactions between itself, as observed through proprioceptive sensors, and the environment, as observed through exteroceptive sensors. In order to develop an awareness system, not only an agent needs to recognize the normal states and perform predictions accordingly, but also it is necessary to detect the abnormal states with respect to its previously learned knowledge. Therefore, there is a need to measure anomalies or irregularities in an observed situation. In this case, the agent should be aware that an abnormality (i.e., a non-stationary condition) never experienced before, is currently present. Due to our specific way of representation, which makes it possible to model multi-sensorial data into a uniform interaction model, the proposed work not only improves predictions of future events but also can be potentially used to effectuate a transfer learning process where information related to the learned model can be moved and interpreted by another body

    Distinction in China - the rise of taste in cultural consumption

    Get PDF
    This research studies how cultural consumption draws cultural distinctions in the most developed megacities in China. This research examines the pattern of music consumption to examine distinction—which types of music are used, how they are used, who are using them, and what are the sources of those tastes. Although some theories, such as the cultural omnivore account, contend that the rise of contemporary pop culture implies a more open-minded pursuit of taste, this research argues that popular culture draws distinction in new ways. Based on a 1048 random-sample survey and 21 interviews on music in China, this research shows how the penetration of foreign music into China has allowed it to become a form of cultural capital—highstatus cultural knowledge and dispositions that can be leveraged for social distinction (Bourdieu, 1984). This research pioneers in cultural capital research the use of MIRT, a latent trait method from psychometrics, to reveal the pattern of music taste. Those with high levels of cultural capital had more exposure to certain types of music such as classical music and selective foreign pop music, which requires knowledge and research to consume, accumulating in "tastes" which they deploy to measure others. Those with low cultural capital tend to follow the mainstream or are uninterested in these music types. In turn, the meaning of cultural capital in China is examined to show how taste is influenced by not only current socioeconomic differences but also the past, most notably the privileged childhood of those growing up in advantaged families. The rise of taste in China is traced to rising inequality under Reform and Opening which led to a diverging upbringing in the newest generation of Chinese. This research updates Bourdieu's theory of cultural capital, which has traditionally focused on elite highbrow culture, by demonstrating how the influx of global culture in a contemporary society has enabled the continuation of cultural distinction

    Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

    Full text link
    Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators

    Reflective Artificial Intelligence

    Get PDF
    As Artificial Intelligence (AI) technology advances, we increasingly delegate mental tasks to machines. However, today's AI systems usually do these tasks with an unusual imbalance of insight and understanding: new, deeper insights are present, yet many important qualities that a human mind would have previously brought to the activity are utterly absent. Therefore, it is crucial to ask which features of minds have we replicated, which are missing, and if that matters. One core feature that humans bring to tasks, when dealing with the ambiguity, emergent knowledge, and social context presented by the world, is reflection. Yet this capability is completely missing from current mainstream AI. In this paper we ask what reflective AI might look like. Then, drawing on notions of reflection in complex systems, cognitive science, and agents, we sketch an architecture for reflective AI agents, and highlight ways forward

    On the link between conscious function and general intelligence in humans and machines

    Get PDF
    In popular media, there is often a connection drawn between the advent of awareness in artificial agents and those same agents simultaneously achieving human or superhuman level intelligence. In this work, we explore the validity and potential application of this seemingly intuitive link between consciousness and intelligence. We do so by examining the cognitive abilities associated with three contemporary theories of conscious function: Global Workspace Theory (GWT), Information Generation Theory (IGT), and Attention Schema Theory (AST). We find that all three theories specifically relate conscious function to some aspect of domain-general intelligence in humans. With this insight, we turn to the field of Artificial Intelligence (AI) and find that, while still far from demonstrating general intelligence, many state-of-the-art deep learning methods have begun to incorporate key aspects of each of the three functional theories. Given this apparent trend, we use the motivating example of mental time travel in humans to propose ways in which insights from each of the three theories may be combined into a unified model. We believe that doing so can enable the development of artificial agents which are not only more generally intelligent but are also consistent with multiple current theories of conscious function
    • …
    corecore