6,631 research outputs found

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Data Mining Using the Crossing Minimization Paradigm

    Get PDF
    Our ability and capacity to generate, record and store multi-dimensional, apparently unstructured data is increasing rapidly, while the cost of data storage is going down. The data recorded is not perfect, as noise gets introduced in it from different sources. Some of the basic forms of noise are incorrect recording of values and missing values. The formal study of discovering useful hidden information in the data is called Data Mining. Because of the size, and complexity of the problem, practical data mining problems are best attempted using automatic means. Data Mining can be categorized into two types i.e. supervised learning or classification and unsupervised learning or clustering. Clustering only the records in a database (or data matrix) gives a global view of the data and is called one-way clustering. For a detailed analysis or a local view, biclustering or co-clustering or two-way clustering is required involving the simultaneous clustering of the records and the attributes. In this dissertation, a novel fast and white noise tolerant data mining solution is proposed based on the Crossing Minimization (CM) paradigm; the solution works for one-way as well as two-way clustering for discovering overlapping biclusters. For decades the CM paradigm has traditionally been used for graph drawing and VLSI (Very Large Scale Integration) circuit design for reducing wire length and congestion. The utility of the proposed technique is demonstrated by comparing it with other biclustering techniques using simulated noisy, as well as real data from Agriculture, Biology and other domains. Two other interesting and hard problems also addressed in this dissertation are (i) the Minimum Attribute Subset Selection (MASS) problem and (ii) Bandwidth Minimization (BWM) problem of sparse matrices. The proposed CM technique is demonstrated to provide very convincing results while attempting to solve the said problems using real public domain data. Pakistan is the fourth largest supplier of cotton in the world. An apparent anomaly has been observed during 1989-97 between cotton yield and pesticide consumption in Pakistan showing unexpected periods of negative correlation. By applying the indigenous CM technique for one-way clustering to real Agro-Met data (2001-2002), a possible explanation of the anomaly has been presented in this thesis

    Multiobjective Simulation Optimization Using Enhanced Evolutionary Algorithm Approaches

    Get PDF
    In today\u27s competitive business environment, a firm\u27s ability to make the correct, critical decisions can be translated into a great competitive advantage. Most of these critical real-world decisions involve the optimization not only of multiple objectives simultaneously, but also conflicting objectives, where improving one objective may degrade the performance of one or more of the other objectives. Traditional approaches for solving multiobjective optimization problems typically try to scalarize the multiple objectives into a single objective. This transforms the original multiple optimization problem formulation into a single objective optimization problem with a single solution. However, the drawbacks to these traditional approaches have motivated researchers and practitioners to seek alternative techniques that yield a set of Pareto optimal solutions rather than only a single solution. The problem becomes much more complicated in stochastic environments when the objectives take on uncertain (or noisy ) values due to random influences within the system being optimized, which is the case in real-world environments. Moreover, in stochastic environments, a solution approach should be sufficiently robust and/or capable of handling the uncertainty of the objective values. This makes the development of effective solution techniques that generate Pareto optimal solutions within these problem environments even more challenging than in their deterministic counterparts. Furthermore, many real-world problems involve complicated, black-box objective functions making a large number of solution evaluations computationally- and/or financially-prohibitive. This is often the case when complex computer simulation models are used to repeatedly evaluate possible solutions in search of the best solution (or set of solutions). Therefore, multiobjective optimization approaches capable of rapidly finding a diverse set of Pareto optimal solutions would be greatly beneficial. This research proposes two new multiobjective evolutionary algorithms (MOEAs), called fast Pareto genetic algorithm (FPGA) and stochastic Pareto genetic algorithm (SPGA), for optimization problems with multiple deterministic objectives and stochastic objectives, respectively. New search operators are introduced and employed to enhance the algorithms\u27 performance in terms of converging fast to the true Pareto optimal frontier while maintaining a diverse set of nondominated solutions along the Pareto optimal front. New concepts of solution dominance are defined for better discrimination among competing solutions in stochastic environments. SPGA uses a solution ranking strategy based on these new concepts. Computational results for a suite of published test problems indicate that both FPGA and SPGA are promising approaches. The results show that both FPGA and SPGA outperform the improved nondominated sorting genetic algorithm (NSGA-II), widely-considered benchmark in the MOEA research community, in terms of fast convergence to the true Pareto optimal frontier and diversity among the solutions along the front. The results also show that FPGA and SPGA require far fewer solution evaluations than NSGA-II, which is crucial in computationally-expensive simulation modeling applications

    Model-based optimization of ARINC-653 partition scheduling

    Get PDF

    Hierarchically organised genetic algorithm for fuzzy network synthesis

    Get PDF

    Parsimony-based genetic algorithm for haplotype resolution and block partitioning

    Get PDF
    This dissertation proposes a new algorithm for performing simultaneous haplotype resolution and block partitioning. The algorithm is based on genetic algorithm approach and the parsimonious principle. The multiloculs LD measure (Normalized Entropy Difference) is used as a block identification criterion. The proposed algorithm incorporates missing data is a part of the model and allows blocks of arbitrary length. In addition, the algorithm provides scores for the block boundaries which represent measures of strength of the boundaries at specific positions. The performance of the proposed algorithm was validated by running it on several publicly available data sets including the HapMap data and comparing results to those of the existing state-of-the-art algorithms. The results show that the proposed genetic algorithm provides the accuracy of haplotype decomposition within the range of the same indicators shown by the other algorithms. The block structure output by our algorithm in general agrees with the block structure for the same data provided by the other algorithms. Thus, the proposed algorithm can be successfully used for block partitioning and haplotype phasing while providing some new valuable features like scores for block boundaries and fully incorporated treatment of missing data. In addition, the proposed algorithm for haplotyping and block partitioning is used in development of the new clustering algorithm for two-population mixed genotype samples. The proposed clustering algorithm extracts from the given genotype sample two clusters with substantially different block structures and finds haplotype resolution and block partitioning for each cluster

    Robust evolutionary methods for multi-objective and multdisciplinary design optimisation in aeronautics

    Get PDF
    corecore