3 research outputs found

    A Motion Estimation based Algorithm for Encoding Time Reduction in HEVC

    Get PDF
    High Efficiency Video Coding (HEVC) is a video compression standard that offers 50% more efficiency at the expense of high encoding time contrasted with the H.264 Advanced Video Coding (AVC) standard. The encoding time must be reduced to satisfy the needs of real-time applications. This paper has proposed the Multi- Level Resolution Vertical Subsampling (MLRVS) algorithm to reduce the encoding time. The vertical subsampling minimizes the number of Sum of Absolute Difference (SAD) computations during the motion estimation process. The complexity reduction algorithm is also used for fast coding the coefficients of the quantised block using a flag decision. Two distinct search patterns are suggested: New Cross Diamond Diamond (NCDD) and New Cross Diamond Hexagonal (NCDH) search patterns, which reduce the time needed to locate the motion vectors. In this paper, the MLRVS algorithm with NCDD and MLRVS algorithm with NCDH search patterns are simulated separately and analyzed. The results show that the encoding time of the encoder is decreased by 55% with MLRVS algorithm using NCDD search pattern and 56% with MLRVS using NCDH search pattern compared to HM16.5 with Test Zone (TZ) search algorithm. These results are achieved with a slight increase in bit rate and negligible deterioration in output video quality

    Hierarchical complexity control algorithm for HEVC based on coding unit depth decision

    No full text
    Abstract The next-generation High Efficiency Video Coding (HEVC) standard reduces the bit rate by 44% on average compared to the previous-generation H.264 standard, resulting in higher encoding complexity. To achieve normal video coding in power-constrained devices and minimize the rate distortion degradation, this paper proposes a hierarchical complexity control algorithm for HEVC on the basis of the coding unit depth decision. First, according to the target complexity and the constantly updated reference time, the coding complexity of the group of pictures layer and the frame layer is allocated and controlled. Second, the maximal depth is adaptively assigned to the coding tree unit (CTU) on the basis of the correlation between the residual information and the optimal depth by establishing the complexity-depth model. Then, the coding unit smoothness decision and adaptive low bit threshold decision are proposed to constrain the unnecessary traversal process within the maximal depth assigned by the CTU. Finally, adaptive upper bit threshold decision is used to continue the necessary traversal process at a larger depth than the maximal depth of allocation to guarantee the quality of important coding units. Experimental results show that our algorithm can reduce the encoding time by up to 50%, with notable control precision and limited performance degradation. Compared to state-of-the-art algorithms, the proposed algorithm can achieve higher control accuracy
    corecore