3,422 research outputs found

    Structure-Aware Sampling: Flexible and Accurate Summarization

    Full text link
    In processing large quantities of data, a fundamental problem is to obtain a summary which supports approximate query answering. Random sampling yields flexible summaries which naturally support subset-sum queries with unbiased estimators and well-understood confidence bounds. Classic sample-based summaries, however, are designed for arbitrary subset queries and are oblivious to the structure in the set of keys. The particular structure, such as hierarchy, order, or product space (multi-dimensional), makes range queries much more relevant for most analysis of the data. Dedicated summarization algorithms for range-sum queries have also been extensively studied. They can outperform existing sampling schemes in terms of accuracy on range queries per summary size. Their accuracy, however, rapidly degrades when, as is often the case, the query spans multiple ranges. They are also less flexible - being targeted for range sum queries alone - and are often quite costly to build and use. In this paper we propose and evaluate variance optimal sampling schemes that are structure-aware. These summaries improve over the accuracy of existing structure-oblivious sampling schemes on range queries while retaining the benefits of sample-based summaries: flexible summaries, with high accuracy on both range queries and arbitrary subset queries

    HBST: A Hamming Distance embedding Binary Search Tree for Visual Place Recognition

    Get PDF
    Reliable and efficient Visual Place Recognition is a major building block of modern SLAM systems. Leveraging on our prior work, in this paper we present a Hamming Distance embedding Binary Search Tree (HBST) approach for binary Descriptor Matching and Image Retrieval. HBST allows for descriptor Search and Insertion in logarithmic time by exploiting particular properties of binary Feature descriptors. We support the idea behind our search structure with a thorough analysis on the exploited descriptor properties and their effects on completeness and complexity of search and insertion. To validate our claims we conducted comparative experiments for HBST and several state-of-the-art methods on a broad range of publicly available datasets. HBST is available as a compact open-source C++ header-only library.Comment: Submitted to IEEE Robotics and Automation Letters (RA-L) 2018 with International Conference on Intelligent Robots and Systems (IROS) 2018 option, 8 pages, 10 figure

    Disentangled Autoencoder for Cross-Stain Feature Extraction in Pathology Image Analysis

    Get PDF
    A novel deep autoencoder architecture is proposed for the analysis of histopathology images. Its purpose is to produce a disentangled latent representation in which the structure and colour information are confined to different subspaces so that stain-independent models may be learned. For this, we introduce two constraints on the representation which are implemented as a classifier and an adversarial discriminator. We show how they can be used for learning a latent representation across haematoxylin-eosin and a number of immune stains. Finally, we demonstrate the utility of the proposed representation in the context of matching image patches for registration applications and for learning a bag of visual words for whole slide image summarization
    • …
    corecore