2 research outputs found

    Understanding Contexts Inside Robot and Human Manipulation Tasks through a Vision-Language Model and Ontology System in a Video Stream

    Full text link
    Manipulation tasks in daily life, such as pouring water, unfold intentionally under specialized manipulation contexts. Being able to process contextual knowledge in these Activities of Daily Living (ADLs) over time can help us understand manipulation intentions, which are essential for an intelligent robot to transition smoothly between various manipulation actions. In this paper, to model the intended concepts of manipulation, we present a vision dataset under a strictly constrained knowledge domain for both robot and human manipulations, where manipulation concepts and relations are stored by an ontology system in a taxonomic manner. Furthermore, we propose a scheme to generate a combination of visual attentions and an evolving knowledge graph filled with commonsense knowledge. Our scheme works with real-world camera streams and fuses an attention-based Vision-Language model with the ontology system. The experimental results demonstrate that the proposed scheme can successfully represent the evolution of an intended object manipulation procedure for both robots and humans. The proposed scheme allows the robot to mimic human-like intentional behaviors by watching real-time videos. We aim to develop this scheme further for real-world robot intelligence in Human-Robot Interaction

    Constrained Motion Planning Networks X

    Full text link
    Constrained motion planning is a challenging field of research, aiming for computationally efficient methods that can find a collision-free path on the constraint manifolds between a given start and goal configuration. These planning problems come up surprisingly frequently, such as in robot manipulation for performing daily life assistive tasks. However, few solutions to constrained motion planning are available, and those that exist struggle with high computational time complexity in finding a path solution on the manifolds. To address this challenge, we present Constrained Motion Planning Networks X (CoMPNetX). It is a neural planning approach, comprising a conditional deep neural generator and discriminator with neural gradients-based fast projection operator. We also introduce neural task and scene representations conditioned on which the CoMPNetX generates implicit manifold configurations to turbo-charge any underlying classical planner such as Sampling-based Motion Planning methods for quickly solving complex constrained planning tasks. We show that our method finds path solutions with high success rates and lower computation times than state-of-the-art traditional path-finding tools on various challenging scenarios.Comment: This is preprint version of a paper published in IEEE Transactions on Robotics. The videos, code, dataset and trained models can be found here: https://sites.google.com/view/compnetx/hom
    corecore