7 research outputs found

    Hierarchical semi-markov conditional random fields for recursive sequential data

    Full text link
    Inspired by the hierarchical hidden Markov models (HHMM), we present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of embedded undirected Markov chains to model complex hierarchical, nested Markov processes. It is parameterised in a discriminative framework and has polynomial time algorithms for learning and inference. Importantly, we develop efficient algorithms for learning and constrained inference in a partially-supervised setting, which is important issue in practice where labels can only be obtained sparsely. We demonstrate the HSCRF in two applications: (i) recognising human activities of daily living (ADLs) from indoor surveillance cameras, and (ii) noun-phrase chunking. We show that the HSCRF is capable of learning rich hierarchical models with reasonable accuracy in both fully and partially observed data cases.<br /

    MCMC for Hierarchical Semi-Markov Conditional Random fields

    Get PDF
    Deep architecture such as hierarchical semi-Markov models is an important class of models for nested sequential data. Current exact inference schemes either cost cubic time in sequence length, or exponential time in model depth. These costs are prohibitive for large-scale problems with arbitrary length and depth. In this contribution, we propose a new approximation technique that may have the potential to achieve sub-cubic time complexity in length and linear time depth, at the cost of some loss of quality. The idea is based on two well-known methods: Gibbs sampling and Rao-Blackwellisation. We provide some simulation-based evaluation of the quality of the RGBS with respect to run time and sequence length

    Unstructured Human Activity Detection from RGBD Images

    Full text link
    Being able to detect and recognize human activities is essential for several applications, including personal assistive robotics. In this paper, we perform detection and recognition of unstructured human activity in unstructured environments. We use a RGBD sensor (Microsoft Kinect) as the input sensor, and compute a set of features based on human pose and motion, as well as based on image and pointcloud information. Our algorithm is based on a hierarchical maximum entropy Markov model (MEMM), which considers a person's activity as composed of a set of sub-activities. We infer the two-layered graph structure using a dynamic programming approach. We test our algorithm on detecting and recognizing twelve different activities performed by four people in different environments, such as a kitchen, a living room, an office, etc., and achieve good performance even when the person was not seen before in the training set.Comment: 2012 IEEE International Conference on Robotics and Automation (A preliminary version of this work was presented at AAAI workshop on Pattern, Activity and Intent Recognition, 2011

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore