5,278 research outputs found

    DAP3D-Net: Where, What and How Actions Occur in Videos?

    Full text link
    Action parsing in videos with complex scenes is an interesting but challenging task in computer vision. In this paper, we propose a generic 3D convolutional neural network in a multi-task learning manner for effective Deep Action Parsing (DAP3D-Net) in videos. Particularly, in the training phase, action localization, classification and attributes learning can be jointly optimized on our appearancemotion data via DAP3D-Net. For an upcoming test video, we can describe each individual action in the video simultaneously as: Where the action occurs, What the action is and How the action is performed. To well demonstrate the effectiveness of the proposed DAP3D-Net, we also contribute a new Numerous-category Aligned Synthetic Action dataset, i.e., NASA, which consists of 200; 000 action clips of more than 300 categories and with 33 pre-defined action attributes in two hierarchical levels (i.e., low-level attributes of basic body part movements and high-level attributes related to action motion). We learn DAP3D-Net using the NASA dataset and then evaluate it on our collected Human Action Understanding (HAU) dataset. Experimental results show that our approach can accurately localize, categorize and describe multiple actions in realistic videos

    Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians

    Full text link
    Convolutional neural nets (CNNs) have demonstrated remarkable performance in recent history. Such approaches tend to work in a unidirectional bottom-up feed-forward fashion. However, practical experience and biological evidence tells us that feedback plays a crucial role, particularly for detailed spatial understanding tasks. This work explores bidirectional architectures that also reason with top-down feedback: neural units are influenced by both lower and higher-level units. We do so by treating units as rectified latent variables in a quadratic energy function, which can be seen as a hierarchical Rectified Gaussian model (RGs). We show that RGs can be optimized with a quadratic program (QP), that can in turn be optimized with a recurrent neural network (with rectified linear units). This allows RGs to be trained with GPU-optimized gradient descent. From a theoretical perspective, RGs help establish a connection between CNNs and hierarchical probabilistic models. From a practical perspective, RGs are well suited for detailed spatial tasks that can benefit from top-down reasoning. We illustrate them on the challenging task of keypoint localization under occlusions, where local bottom-up evidence may be misleading. We demonstrate state-of-the-art results on challenging benchmarks.Comment: To appear in CVPR 201
    • …
    corecore