207 research outputs found

    Topic modeling-based domain adaptation for system combination

    Get PDF
    This paper gives the system description of the domain adaptation team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). We used the results of unsupervised document classification as meta information to the system combination module. For the Spanish-English data, our strategy achieved 26.33 BLEU points, 0.33 BLEU points absolute improvement over the standard confusion-network-based system combination. This was the best score in terms of BLEU among six participants in ML4HMT-12

    Producing power-law distributions and damping word frequencies with two-stage language models

    Get PDF
    Standard statistical models of language fail to capture one of the most striking properties of natural languages: the power-law distribution in the frequencies of word tokens. We present a framework for developing statisticalmodels that can generically produce power laws, breaking generativemodels into two stages. The first stage, the generator, can be any standard probabilistic model, while the second stage, the adaptor, transforms the word frequencies of this model to provide a closer match to natural language. We show that two commonly used Bayesian models, the Dirichlet-multinomial model and the Dirichlet process, can be viewed as special cases of our framework. We discuss two stochastic processes-the Chinese restaurant process and its two-parameter generalization based on the Pitman-Yor process-that can be used as adaptors in our framework to produce power-law distributions over word frequencies. We show that these adaptors justify common estimation procedures based on logarithmic or inverse-power transformations of empirical frequencies. In addition, taking the Pitman-Yor Chinese restaurant process as an adaptor justifies the appearance of type frequencies in formal analyses of natural language and improves the performance of a model for unsupervised learning of morphology.48 page(s

    Word alignment and smoothing methods in statistical machine translation: Noise, prior knowledge and overfitting

    Get PDF
    This thesis discusses how to incorporate linguistic knowledge into an SMT system. Although one important category of linguistic knowledge is that obtained by a constituent / dependency parser, a POS / super tagger, and a morphological analyser, linguistic knowledge here includes larger domains than this: Multi-Word Expressions, Out-Of-Vocabulary words, paraphrases, lexical semantics (or non-literal translations), named-entities, coreferences, and transliterations. The first discussion is about word alignment where we propose a MWE-sensitive word aligner. The second discussion is about the smoothing methods for a language model and a translation model where we propose a hierarchical Pitman-Yor process-based smoothing method. The common grounds for these discussion are the examination of three exceptional cases from real-world data: the presence of noise, the availability of prior knowledge, and the problem of underfitting. Notable characteristics of this design are the careful usage of (Bayesian) priors in order that it can capture both frequent and linguistically important phenomena. This can be considered to provide one example to solve the problems of statistical models which often aim to learn from frequent examples only, and often overlook less frequent but linguistically important phenomena

    A Parallel Training Algorithm for Hierarchical Pitman-Yor Process Language Models

    Get PDF
    The Hierarchical Pitman Yor Process Language Model (HPYLM) is a Bayesian language model based on a non-parametric prior, the Pitman-Yor Process. It has been demonstrated, both theoretically and practically, that the HPYLM can provide better smoothing for language modeling, compared with state-of-the-art approaches such as interpolated Kneser-Ney and modified Kneser-Ney smoothing. However, estimation of Bayesian language models is expensive in terms of both computation time and memory; the inference is approximate and requires a number of iterations to converge. In this paper, we present a parallel training algorithm for the HPYLM, which enables the approach to be applied in the context of automatic speech recognition, using large training corpora with large vocabularies. We demonstrate the effectiveness of the proposed algorithm by estimating language models from corpora for meeting transcription containing over 200 million words, and observe significant reductions in perplexity and word error rate

    SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model

    Full text link
    To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots to understand the environment through a variety of sensors with which they are equipped. In this paper, we propose a novel framework named Serket that enables the construction of a large-scale generative model and its inference easily by connecting sub-modules to allow the robots to acquire various capabilities through interaction with their environments and others. We consider that large-scale cognitive models can be constructed by connecting smaller fundamental models hierarchically while maintaining their programmatic independence. Moreover, connected modules are dependent on each other, and parameters are required to be optimized as a whole. Conventionally, the equations for parameter estimation have to be derived and implemented depending on the models. However, it becomes harder to derive and implement those of a larger scale model. To solve these problems, in this paper, we propose a method for parameter estimation by communicating the minimal parameters between various modules while maintaining their programmatic independence. Therefore, Serket makes it easy to construct large-scale models and estimate their parameters via the connection of modules. Experimental results demonstrated that the model can be constructed by connecting modules, the parameters can be optimized as a whole, and they are comparable with the original models that we have proposed

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic
    corecore