9,422 research outputs found

    Variational recurrent sequence-to-sequence retrieval for stepwise illustration

    Get PDF
    We address and formalise the task of sequence-to-sequence (seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the goal is to retrieve a sequence of images that best describes and aligns with the query. This new task extends the traditional cross-modal retrieval, where each image-text pair is treated independently ignoring broader context. We propose a novel variational recurrent seq2seq (VRSS) retrieval model for this seq2seq task. Unlike most cross-modal methods, we generate an image vector corresponding to the latent topic obtained from combining the text semantics and context. This synthetic image embedding point associated with every text embedding point can then be employed for either image generation or image retrieval as desired. We evaluate the model for the application of stepwise illustration of recipes, where a sequence of relevant images are retrieved to best match the steps described in the text. To this end, we build and release a new Stepwise Recipe dataset for research purposes, containing 10K recipes (sequences of image-text pairs) having a total of 67K image-text pairs. To our knowledge, it is the first publicly available dataset to offer rich semantic descriptions in a focused category such as food or recipes. Our model is shown to outperform several competitive and relevant baselines in the experiments. We also provide qualitative analysis of how semantically meaningful the results produced by our model are through human evaluation and comparison with relevant existing methods

    Adaptive content mapping for internet navigation

    Get PDF
    The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database

    Klink-2: integrating multiple web sources to generate semantic topic networks

    Get PDF
    The amount of scholarly data available on the web is steadily increasing, enabling different types of analytics which can provide important insights into the research activity. In order to make sense of and explore this large-scale body of knowledge we need an accurate, comprehensive and up-to-date ontology of research topics. Unfortunately, human crafted classifications do not satisfy these criteria, as they evolve too slowly and tend to be too coarse-grained. Current automated methods for generating ontologies of research areas also present a number of limitations, such as: i) they do not consider the rich amount of indirect statistical and semantic relationships, which can help to understand the relation between two topics – e.g., the fact that two research areas are associated with a similar set of venues or technologies; ii) they do not distinguish between different kinds of hierarchical relationships; and iii) they are not able to handle effectively ambiguous topics characterized by a noisy set of relationships. In this paper we present Klink-2, a novel approach which improves on our earlier work on automatic generation of semantic topic networks and addresses the aforementioned limitations by taking advantage of a variety of knowledge sources available on the web. In particular, Klink-2 analyses networks of research entities (including papers, authors, venues, and technologies) to infer three kinds of semantic relationships between topics. It also identifies ambiguous keywords (e.g., “ontology”) and separates them into the appropriate distinct topics – e.g., “ontology/philosophy” vs. “ontology/semantic web”. Our experimental evaluation shows that the ability of Klink-2 to integrate a high number of data sources and to generate topics with accurate contextual meaning yields significant improvements over other algorithms in terms of both precision and recall
    • …
    corecore