4,903 research outputs found

    Hierarchical Importance Weighted Autoencoders

    Full text link
    Importance weighted variational inference (Burda et al., 2015) uses multiple i.i.d. samples to have a tighter variational lower bound. We believe a joint proposal has the potential of reducing the number of redundant samples, and introduce a hierarchical structure to induce correlation. The hope is that the proposals would coordinate to make up for the error made by one another to reduce the variance of the importance estimator. Theoretically, we analyze the condition under which convergence of the estimator variance can be connected to convergence of the lower bound. Empirically, we confirm that maximization of the lower bound does implicitly minimize variance. Further analysis shows that this is a result of negative correlation induced by the proposed hierarchical meta sampling scheme, and performance of inference also improves when the number of samples increases.Comment: Accepted by ICML 2019. 17 page

    Learning Hierarchical Priors in VAEs

    Full text link
    We propose to learn a hierarchical prior in the context of variational autoencoders to avoid the over-regularisation resulting from a standard normal prior distribution. To incentivise an informative latent representation of the data, we formulate the learning problem as a constrained optimisation problem by extending the Taming VAEs framework to two-level hierarchical models. We introduce a graph-based interpolation method, which shows that the topology of the learned latent representation corresponds to the topology of the data manifold---and present several examples, where desired properties of latent representation such as smoothness and simple explanatory factors are learned by the prior.Comment: Published at NeurIPS 2019 (spotlight

    Variational Composite Autoencoders

    Full text link
    Learning in the latent variable model is challenging in the presence of the complex data structure or the intractable latent variable. Previous variational autoencoders can be low effective due to the straightforward encoder-decoder structure. In this paper, we propose a variational composite autoencoder to sidestep this issue by amortizing on top of the hierarchical latent variable model. The experimental results confirm the advantages of our model

    Asymmetric Variational Autoencoders

    Full text link
    Variational inference for latent variable models is prevalent in various machine learning problems, typically solved by maximizing the Evidence Lower Bound (ELBO) of the true data likelihood with respect to a variational distribution. However, freely enriching the family of variational distribution is challenging since the ELBO requires variational likelihood evaluations of the latent variables. In this paper, we propose a novel framework to enrich the variational family by incorporating auxiliary variables to the variational family. The resulting inference network doesn't require density evaluations for the auxiliary variables and thus complex implicit densities over the auxiliary variables can be constructed by neural networks. It can be shown that the actual variational posterior of the proposed approach is essentially modeling a rich probabilistic mixture of simple variational posterior indexed by auxiliary variables, thus a flexible inference model can be built. Empirical evaluations on several density estimation tasks demonstrates the effectiveness of the proposed method.Comment: ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Model

    Undirected Graphical Models as Approximate Posteriors

    Full text link
    The representation of the approximate posterior is a critical aspect of effective variational autoencoders (VAEs). Poor choices for the approximate posterior have a detrimental impact on the generative performance of VAEs due to the mismatch with the true posterior. We extend the class of posterior models that may be learned by using undirected graphical models. We develop an efficient method to train undirected approximate posteriors by showing that the gradient of the training objective with respect to the parameters of the undirected posterior can be computed by backpropagation through Markov chain Monte Carlo updates. We apply these gradient estimators for training discrete VAEs with Boltzmann machines as approximate posteriors and demonstrate that undirected models outperform previous results obtained using directed graphical models. Our implementation is available at https://github.com/QuadrantAI/dvaess .Comment: Accepted to ICML 202

    Advances in Variational Inference

    Full text link
    Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully used in various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions

    Doubly Semi-Implicit Variational Inference

    Full text link
    We extend the existing framework of semi-implicit variational inference (SIVI) and introduce doubly semi-implicit variational inference (DSIVI), a way to perform variational inference and learning when both the approximate posterior and the prior distribution are semi-implicit. In other words, DSIVI performs inference in models where the prior and the posterior can be expressed as an intractable infinite mixture of some analytic density with a highly flexible implicit mixing distribution. We provide a sandwich bound on the evidence lower bound (ELBO) objective that can be made arbitrarily tight. Unlike discriminator-based and kernel-based approaches to implicit variational inference, DSIVI optimizes a proper lower bound on ELBO that is asymptotically exact. We evaluate DSIVI on a set of problems that benefit from implicit priors. In particular, we show that DSIVI gives rise to a simple modification of VampPrior, the current state-of-the-art prior for variational autoencoders, which improves its performance

    Learning Latent Superstructures in Variational Autoencoders for Deep Multidimensional Clustering

    Full text link
    We investigate a variant of variational autoencoders where there is a superstructure of discrete latent variables on top of the latent features. In general, our superstructure is a tree structure of multiple super latent variables and it is automatically learned from data. When there is only one latent variable in the superstructure, our model reduces to one that assumes the latent features to be generated from a Gaussian mixture model. We call our model the latent tree variational autoencoder (LTVAE). Whereas previous deep learning methods for clustering produce only one partition of data, LTVAE produces multiple partitions of data, each being given by one super latent variable. This is desirable because high dimensional data usually have many different natural facets and can be meaningfully partitioned in multiple ways.Comment: Published in ICLR 201

    Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification

    Full text link
    Unsupervised learning and supervised learning are key research topics in deep learning. However, as high-capacity supervised neural networks trained with a large amount of labels have achieved remarkable success in many computer vision tasks, the availability of large-scale labeled images reduced the significance of unsupervised learning. Inspired by the recent trend toward revisiting the importance of unsupervised learning, we investigate joint supervised and unsupervised learning in a large-scale setting by augmenting existing neural networks with decoding pathways for reconstruction. First, we demonstrate that the intermediate activations of pretrained large-scale classification networks preserve almost all the information of input images except a portion of local spatial details. Then, by end-to-end training of the entire augmented architecture with the reconstructive objective, we show improvement of the network performance for supervised tasks. We evaluate several variants of autoencoders, including the recently proposed "what-where" autoencoder that uses the encoder pooling switches, to study the importance of the architecture design. Taking the 16-layer VGGNet trained under the ImageNet ILSVRC 2012 protocol as a strong baseline for image classification, our methods improve the validation-set accuracy by a noticeable margin.Comment: International Conference on Machine Learning (ICML), 201

    Importance Weighted Hierarchical Variational Inference

    Full text link
    Variational Inference is a powerful tool in the Bayesian modeling toolkit, however, its effectiveness is determined by the expressivity of the utilized variational distributions in terms of their ability to match the true posterior distribution. In turn, the expressivity of the variational family is largely limited by the requirement of having a tractable density function. To overcome this roadblock, we introduce a new family of variational upper bounds on a marginal log density in the case of hierarchical models (also known as latent variable models). We then give an upper bound on the Kullback-Leibler divergence and derive a family of increasingly tighter variational lower bounds on the otherwise intractable standard evidence lower bound for hierarchical variational distributions, enabling the use of more expressive approximate posteriors. We show that previously known methods, such as Hierarchical Variational Models, Semi-Implicit Variational Inference and Doubly Semi-Implicit Variational Inference can be seen as special cases of the proposed approach, and empirically demonstrate superior performance of the proposed method in a set of experiments
    • …
    corecore