4 research outputs found

    Multi-Level Graph Matching Networks for Deep Graph Similarity Learning

    Full text link
    While the celebrated graph neural networks yield effective representations for individual nodes of a graph, there has been relatively less success in extending to the task of graph similarity learning. Recent work on graph similarity learning has considered either global-level graph-graph interactions or low-level node-node interactions, ignoring the rich cross-level interactions (e.g., between nodes of a graph and the other whole graph). In this paper, we propose a Multi-Level Graph Matching Network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects in an end-to-end fashion. The proposed model MGMN consists of a node-graph matching network for effectively learning cross-level interactions between nodes of a graph and the other whole graph, and a siamese graph neural network to learn global-level interactions between two input graphs. Furthermore, to bridge the gap of the lack of standard graph similarity learning benchmarks, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks with different sizes in order to evaluate the effectiveness and robustness of our models. Comprehensive experiments demonstrate that the proposed model MGMN consistently outperforms state-of-the-art baseline models one both the graph-graph classification and graph-graph regression tasks. Compared with previous work, MGMN also exhibits stronger robustness as the sizes of the two input graphs increase.Comment: 14 pages, rename names & fix typos, under revie

    Fast Detection of Maximum Common Subgraph via Deep Q-Learning

    Full text link
    Detecting the Maximum Common Subgraph (MCS) between two input graphs is fundamental for applications in biomedical analysis, malware detection, cloud computing, etc. This is especially important in the task of drug design, where the successful extraction of common substructures in compounds can reduce the number of experiments needed to be conducted by humans. However, MCS computation is NP-hard, and state-of-the-art exact MCS solvers do not have worst-case time complexity guarantee and cannot handle large graphs in practice. Designing learning based models to find the MCS between two graphs in an approximate yet accurate way while utilizing as few labeled MCS instances as possible remains to be a challenging task. Here we propose RLMCS, a Graph Neural Network based model for MCS detection through reinforcement learning. Our model uses an exploration tree to extract subgraphs in two graphs one node pair at a time, and is trained to optimize subgraph extraction rewards via Deep Q-Networks. A novel graph embedding method is proposed to generate state representations for nodes and extracted subgraphs jointly at each step. Experiments on real graph datasets demonstrate that our model performs favorably to exact MCS solvers and supervised neural graph matching network models in terms of accuracy and efficiency

    Deep Graph Matching and Searching for Semantic Code Retrieval

    Full text link
    Code retrieval is to find the code snippet from a large corpus of source code repositories that highly matches the query of natural language description. Recent work mainly uses natural language processing techniques to process both query texts (i.e., human natural language) and code snippets (i.e., machine programming language), however neglecting the deep structured features of query texts and source codes, both of which contain rich semantic information. In this paper, we propose an end-to-end deep graph matching and searching (DGMS) model based on graph neural networks for the task of semantic code retrieval. To this end, we first represent both natural language query texts and programming language code snippets with the unified graph-structured data, and then use the proposed graph matching and searching model to retrieve the best matching code snippet. In particular, DGMS not only captures more structural information for individual query texts or code snippets but also learns the fine-grained similarity between them by cross-attention based semantic matching operations. We evaluate the proposed DGMS model on two public code retrieval datasets with two representative programming languages (i.e., Java and Python). Experiment results demonstrate that DGMS significantly outperforms state-of-the-art baseline models by a large margin on both datasets. Moreover, our extensive ablation studies systematically investigate and illustrate the impact of each part of DGMS.Comment: Accepted by ACM Transactions on Knowledge Discovery from Data (ACM TKDD

    Deep Graph Similarity Learning: A Survey

    Full text link
    In many domains where data are represented as graphs, learning a similarity metric among graphs is considered a key problem, which can further facilitate various learning tasks, such as classification, clustering, and similarity search. Recently, there has been an increasing interest in deep graph similarity learning, where the key idea is to learn a deep learning model that maps input graphs to a target space such that the distance in the target space approximates the structural distance in the input space. Here, we provide a comprehensive review of the existing literature of deep graph similarity learning. We propose a systematic taxonomy for the methods and applications. Finally, we discuss the challenges and future directions for this problem
    corecore